Processing math: 8%

绿色低碳油气开发工程技术的发展思考

李阳, 王敏生, 薛兆杰, 光新军

李阳,王敏生,薛兆杰,等. 绿色低碳油气开发工程技术的发展思考[J]. 石油钻探技术,2023, 51(4):11-19. DOI: 10.11911/syztjs.2023025
引用本文: 李阳,王敏生,薛兆杰,等. 绿色低碳油气开发工程技术的发展思考[J]. 石油钻探技术,2023, 51(4):11-19. DOI: 10.11911/syztjs.2023025
LI Yang, WANG Minsheng, XUE Zhaojie, et al. Thoughts on green and low-carbon oil and gas development engineering technologies [J]. Petroleum Drilling Techniques,2023, 51(4):11-19. DOI: 10.11911/syztjs.2023025
Citation: LI Yang, WANG Minsheng, XUE Zhaojie, et al. Thoughts on green and low-carbon oil and gas development engineering technologies [J]. Petroleum Drilling Techniques,2023, 51(4):11-19. DOI: 10.11911/syztjs.2023025

绿色低碳油气开发工程技术的发展思考

基金项目: 中国石化科技攻关项目“面向2035年的油气开发工程前沿技术战略研究”(编号:P20031)部分研究内容
详细信息
    作者简介:

    李阳(1958—),男,山东东平人,1982年毕业于华东石油学院石油地质专业,2000年获中国科学院地质学专业博士学位,正高级工程师,中国工程院院士,主要从事油气藏开发基础理论和关键技术研究工作。系本刊编委。E-mail:liyang@sinopec.com

  • 中图分类号: TE08

Thoughts on Green and Low-Carbon Oil and Gas Development Engineering Technologies

  • 摘要:

    为了应对全球气候变化,全球主要国家和地区制定了碳中和减排目标。油气作为传统化石能源,低碳转型是可持续发展的必由之路,通过技术创新与管理来减少碳排放已成为行业共识。在此背景下,绿色低碳油气开发工程技术也呈现出新的发展趋势,值得我国学习和借鉴。在阐述油气开发工程技术低碳发展行业背景的基础上,分析了绿色低碳油气开发工程技术的发展趋势,结合碳中和背景下我国油气行业发展面临的挑战,提出了油气开发钻井提速提效工程技术、数字化智能化油气开发工程技术、碳捕集利用与封存技术、油气开发节能减排与尾废利用技术和油气与新能源耦合技术等绿色低碳油气开发工程技术发展方向。围绕这些技术发展方向涉及的关键技术进行攻关与推广应用,尽快形成适用于我国的绿色低碳油气开发工程技术系列,对于实现净零排放目标和整体经济效益提升具有重要意义。

    Abstract:

    An emission reduction target of carbon neutrality has been set by major countries and regions in the world to tackle global climate change. As conventional fossil energy, oil and gas can only be developed sustainably in an inevitable course of low-carbon transformation. Additionally, an industry consensus has been reached to reduce carbon emissions through technological innovation and management. Within the above context, new development trends are exhibited by green and low-carbon oil and gas development engineering technologies,which are worth learning and reference by China. The development trends of green and low-carbon oil and gas development engineering technologies were analyzed after the industry context of the low-carbon development of oil and gas development engineering technologies had been adequately elaborated. A number of development directions were proposed for green and low-carbon oil and gas development engineering technologies to address the challenges in the development of the oil and gas industry in China in the pursuit of carbon neutrality.They included oil and gas development engineering technologies for rate of penetration (ROP) and efficiency improvements, digital and intelligent oil and gas development engineering technologies, carbon capture, utilization, and storage (CCUS) technologies, oil and gas development technologies for energy conservation and emission reductions as well as tailings and waste utilization, and technologies that couple oil and gas with new energy. Tackling critical issues for key technologies in the above technological development directions, furthering the promotion and application of these technologies, and fostering a series of green and low-carbon oil and gas development engineering technologies readily applicable to the situation in China as soon as possible are of great significance for the fulfillment of the net-zero emission target and the promotion of the overall economic benefits.

  • 大庆油田古龙凹陷页岩油资源量巨大,勘探开发前景广阔,是大庆油田重要的接替领域[1-2]。目前,大庆油田古龙页岩油开发大多采用长水平段水平井,但由于降本增效的要求,钻进提速需求十分紧迫。较高的机械钻速意味着产生大量的岩屑,而岩屑运移不充分造成的井眼清洁问题已逐渐成为古龙页岩油区块水平井钻井的主要问题之一。当更换钻头、接单根等作业需要停止钻井液循环时,钻井液中的岩屑会发生沉降,并在大斜度井段和水平井段沉积形成岩屑床[3-4]。岩屑沉降末速度、成床厚度、岩屑床表面颗粒再启动速度等关键参数的计算,均与岩屑的沉降阻力系数有关[5-7]。因此,研究古龙页岩岩屑在钻井液中的沉降规律,可为优化钻井液流变性和循环排量提供依据。

    国内外学者对球形颗粒在牛顿流体中的沉降规律开展了大量的试验研究[8-9],得到了较高精度的预测模型。但是,页岩岩屑的形状不规则,且大多数钻井液为具有一定剪切稀释性的非牛顿流体[10-11],以往提出的预测球形颗粒在牛顿流体中的沉降阻力系数模型,是否适用于预测不规则形状页岩岩屑在非牛顿流体中的沉降阻力系数值得商榷[12-13]。为了解决上述问题,笔者对沉降试验数据回归分析,建立了球形颗粒在幂律流体中的沉降阻力系数预测模型;在此基础上,引入形状因子来描述颗粒的二维几何特征,建立了用于预测页岩岩屑在幂律流体中的阻力系数模型;根据得到的岩屑阻力系数预测模型使用迭代法计算岩屑沉降速度,分析了通过模型计算所得的沉降速度与实测沉降速度的平均相对误差,验证了该模型预测结果的准确性。

    沉降试验装置如图1所示。该装置为有机玻璃管,内径100 mm,高度1 500 mm。该装置使用千眼狼高速摄像机(2F04C型)捕捉岩屑的沉降轨迹。图像采集区域设置为玻璃管底部300 mm范围内,既保证岩屑已达到沉降末速度,又避免端部效应对沉降速度产生影响。同时,为了减少不确定性因素的干扰,每组试验至少重复进行3次,且数据处理时只保留最大相对误差小于5%的试验数据,用于拟合阻力系数的关系式。

    图  1  沉降试验装置示意
    Figure  1.  Devices for settlement experiments

    为了使沉降阻力系数预测模型具有较大的颗粒雷诺数适用范围,选取不锈钢、氧化锆和玻璃3种材质的球形颗粒进行沉降试验,同时选取大庆油田古龙页岩岩屑进行不规则形状颗粒沉降试验。为了降低壁面效应对试验的影响,颗粒直径相比有机玻璃管直径尽量小。试验用颗粒的物性参数见表1

    表  1  试验用颗粒的物性参数
    Table  1.  Physical property parameters of particles for experiments
    颗粒材质颗粒等效直径/mm密度/(kg·m−3
    不锈钢1,2,3,4,57 930
    氧化锆1,2,3,4,56 080
    玻璃1,2,3,4,52 500
    页岩颗粒2.1~5.72 073
    下载: 导出CSV 
    | 显示表格

    试验用羧甲基纤维素钠(CMC)水溶液作为幂律流体基液,质量分数0.25%~2.00%。使用Anto paar MCR 92型流变仪测试其在试验温度下的流变性,并根据幂律流体的流变模型τ=K˙γnτ为剪切应力,Pa;˙γ为剪切速率,s−1K为幂律流体的稠度指数,Pa·snn为流体的流性指数),对测试流体的流变参数进行拟合。通过流变仪的温度控制系统来控制试验液体温度,使其与试验时的温度保持一致。试验所用溶液的物性参数及流变参数见表2

    表  2  不同质量分数CMC水溶液的物性参数及流变参数
    Table  2.  Physical property and rheological parameters of CMC aqueous solution with different mass fractions
    CMC质量分数,%温度/℃密度/(kg·m−3流变参数
    K/(Pa·snn
    2.0017.31 008.08.161 90.418 2
    1.7518.61 006.05.340 50.443 7
    1.5018.01 005.03.320 40.471 0
    1.2517.61 004.51.532 20.522 4
    1.0017.21 003.00.697 70.578 6
    0.5016.61 002.00.045 00.819 4
    0.2516.91 001.00.008 00.953 0
    下载: 导出CSV 
    | 显示表格

    颗粒形状是影响物体沉降速度和沉降状态的重要因素。有学者研究指出[14],当颗粒雷诺数Res时岩屑沉降轨迹是摆动的,而当R{e_{\rm{s}}} < 100时沉降轨迹是稳定的。在不考虑颗粒沉降过程中出现的二次运动,圆形度c更适合用于建立预测模型[15]。所以,在R{e_{\rm{s}}} < 100的低颗粒雷诺数情况下,通过引入c来建立岩屑在幂律流体中的沉降阻力系数预测模型是可行的。c指颗粒最大投影面周长与其等效圆的周长之比,因其为对颗粒轮廓不规则性敏感的二维形状参数,所以测量相对容易,其定义为:

    c = \frac{{{\text{π}} {d_A}}}{L} (1)

    式中:dA为颗粒最大投影面等效圆的直径,m;L为颗粒最大投影面周长,m。

    试验用大庆古龙页岩岩屑形态如图2所示。

    图  2  古龙凹陷不同井深处页岩岩屑形态
    Figure  2.  Cuttings morphology in different well depths of the Gulong Depression

    利用图像粒子分析软件ImageJ的“分析颗粒”功能,对目标颗粒进行了圆形度测定。ImageJ用户指南中圆形度c的定义为[16]

    {\text{ }}c = 4{\text{π}} \frac{{{A_{\text{p}}}}}{{{L^2}}} (2)

    式中:AP为颗粒最大投影面的表面积,m2

    球形颗粒c = 1,其他任何形状颗粒c < 1。选取的部分页岩岩屑图像转换实例,如图3所示。

    图  3  古龙页岩岩屑的图像转换实例
    Figure  3.  Image conversion example of Gulong shale cuttings

    试验得到了224组页岩岩屑圆形度和等效直径的分布情况(见图4)。页岩岩屑等效直径为3.2~4.2 mm,中值为3.7 mm;圆形度为0.65~0.87,中值为0.76,圆形度集中在0.70~0.85。

    图  4  页岩岩屑圆形度与等效直径的分布关系
    Figure  4.  Distribution relationship between the roundness and equivalent diameter of shale cuttings

    颗粒沉降过程中受到的流体黏滞力与颗粒动能的比值称为阻力系数,是描述颗粒沉降行为的主要参数。阻力系数可根据流体和颗粒的性质以及沉降速度来计算:

    {C_{\text{D}}} = \frac{{4\left( {{\rho _{\rm{p}}} - {\rho _{\rm{l}}}} \right){d_{\rm{e}}}g}}{{3{\rho _{\rm{l}}}{v_{\rm{t}}}^2}} (3)
    \; 其中\qquad \qquad\qquad\; {d_{\rm{e}}} = \sqrt[3]{\dfrac{6{m_{\rm{p}}}}{{\text{π}} {\rho _{\rm{p}}}}} \qquad\qquad \qquad\quad\; (4)

    式中:CD为阻力系数;ρl 为流体密度,kg/m3g为重力加速度,m/s2vt 为沉降速度,m/s;de为颗粒的等效直径(当颗粒为球体时,de等于直径),m;mp为颗粒的质量,kg;ρp为颗粒的密度,kg/m3

    对于光滑圆球,阻力系数仅为颗粒雷诺数的函数,即:

    {C_{\text{D}}} = f\left( {R{e_{\rm{s}}}} \right) (5)

    颗粒所受的惯性力与黏滞力之比为颗粒雷诺数,是描述颗粒沉降行为的另一个主要参数。对于幂律流体,颗粒雷诺数的表达式为:

    {Re_{\rm{s}}} = \frac{{{\rho _l}{v_{\text{t}}}^{2 - n}d_{\rm{e}}^n}}{K} (6)

    首先对球形颗粒进行沉降试验,并建立阻力系数CD(式(3))和颗粒雷诺数Res(式(6))的关系式。对196组球形颗粒的沉降试验数据进行分析,并以对数坐标绘制CDRes的关系式,见图5图5中,三角形(幂律流体中沉降试验结果)所表示的数据点,由式(6)计算所得的颗粒雷诺数Res与式(3)计算所得的阻力系数CD组成;斜线(斯托克斯公式计算结果)所表示的数据点,由式(6)计算所得的颗粒雷诺数Res与斯托克斯公式(CD=24/Res)计算所得的阻力系数CD组成。

    图  5  沉降试验得到的196组球形颗粒的CDRes关系
    Figure  5.  CD-Res relationship of 196 groups of spherical particles obtained through settlement experiments

    图5可以看出,使用斯托克斯公式预测球形颗粒在幂律流体中的沉降阻力系数时存在较大的误差。例如,在Res< 0.1条件下,幂律流体中的沉降试验结果与斯托克斯公式预测结果之间的平均相对误差高达30.16%,说明非牛顿流体的流变特性对流体–的颗粒相互作用有重要影响。在这种情况下,用牛顿关联式计算圆球在非牛顿流体中的沉降阻力系数将会产生较大的误差。

    截至目前,多位学者提出了关于球形颗粒在非牛顿流体中的沉降阻力系数预测关系式,如S. N.Shah等人[17]提出的沉降阻力系数模型为:

    \sqrt {C_{\text{D}}^{2 - n}R{e^2}} = A{\left( {Re} \right)^B} \;\; \left( {{\text{0}}{\text{.281 < }}R{e_{\rm{s}}}{\text{ < }}1.000} \right) (7)

    式中:A = 6.914\;8{n^2} - 24.838n + 22.642B = - 0.506\;7{n^2} + 1.323\;4n - 0.174\;4

    A. R. Khan等人[18]提出的阻力系数模型为:

    \begin{split} {C_{\text{D}}} = & {(2.25R{e_{\rm{s}}}^{ - 0.31} + 0.36R{e_{\rm{s}}}^{0.06})^{3.45}}\\ &{\text{ (0}}{\text{.01 < }}R{e_{\rm{s}}}{\text{ < 3.00}} \times {\text{1}}{{\text{0}}^{\text{5}}}) \end{split} (8)

    I. Machač等人[19]提出的阻力系数模型为:

    \left\{ {\begin{array}{*{20}{ll}} {C_{\text{D}}} = \dfrac{{24}}{{R{e_{\rm{s}}}}}X\left( n \right)&(R{e_{\rm{s}}} < 1) \\ {C_{\text{D}}} = \dfrac{{24}}{{R{e_{\rm{s}}}}}X\left( n \right) + \dfrac{{10.5n - 3.5}}{{R{e_{\rm{s}}}^{0.32n + 0.13}}} &(1 \leqslant R{e_{\rm{s}}} < 1\;000){\text{ }} \end{array}} \right. (9)
    \begin{split} \,其中 \; \qquad X\left( n \right) = &{3^{\tfrac{3n - 3}{2}}}\frac{{33{n^5} - 64{n^4} - 11{n^3} + 97{n^2} + 16n}}{{4{n^2}(n + 1)(n + 2)(2n + 1)}}\;\\ &(n > 0.5 )\;\;\;\;\\[-10pt] \end{split}\;\;\;\; (10)

    V. C. Kelessidis等人[20]提出的阻力系数模型为:

    \begin{split} {C_{\text{D}}} = &\frac{{24}}{{R{e_{\rm{s}}}}}(1 + 0.140\;7R{e_{\rm{s}}}^{0.601\;8}) + \frac{{0.211\;8}}{{1 + \dfrac{0.421\;5}{R{e_{\rm{s}}}}}}\\ &{\text{ (0}}{\text{.1 < }}R{e_{\rm{s}}}{\text{ < 1\;000.0)}} \end{split} (11)

    利用球形颗粒沉降试验数据对上述沉降阻力系数模型进行参数拟合,发现V. C. Kelessidis等人[20]提出的五参数阻力系数模型具有最佳的拟合优度,其形式为:

    {C_{\text{D}}} = \frac{{24}}{{R{e_{\rm{s}}}}}(1 + AR{e_{\rm{s}}}^B) + \frac{C}{{1 + {\dfrac{D}{Re_{\rm{s}}^E}}}} (12)

    式中:ABCDE均为相关系数。

    式(12)中,等号右边第一项表示层流条件下阻力系数的下降趋势,第二项表示湍流条件下阻力系数的下降趋势,可以通过在扩展的斯托克斯定律中加入一个复杂的湍流项来预测阻力系数。上述推论符合物理基本规律,即总的拖曳力是任意流动状态下层流和湍流分量的总和[21]

    对196组球形颗粒的沉降试验数据进行拟合回归,得到球形颗粒在幂律流体中的沉降阻力系数:

    \begin{split} {C_{\text{D}}} =& \frac{{24}}{{R{e_{\rm{s}}}}}(1 + 0.723R{e_{\rm{s}}}^{0.304}) + \frac{{0.219}}{{1 + \dfrac{{55.03}}{{R{e_{\rm{s}}}^{1.757}}}}}{\text{ }}\\ &\left( {{\text{0}}{\text{.001 < }}R{e_{\rm{s}}} < 848.000} \right) \end{split} (13)

    通过对比式(13)与已发表文献中具有代表性的关系式,即式(8)、式(9)和式(11),采用平均相对误差(δMRE)、最大平均相对误差(δMMRE)和均方根对数误差(δRMSLE)等3个统计参数,评估所提出的幂律流体中球形颗粒沉降阻力系数关系式的预测精度,对比结果见表3

    表  3  幂律流体中球形颗粒沉降阻力系数误差统计
    Table  3.  Error statistics of the settlement drag coefficient of spherical particles in power-law fluids
    颗粒雷诺数范围模型预测误差,%
    δMREδMMREδRMSLE
    0.001<Res<848.000式(8)17.3623.0034.94
    式(9)13.3114.0032.73
    式(11)20.8434.0039.24
    式(13)7.118.0019.72
    下载: 导出CSV 
    | 显示表格

    δMREδRMSLE 的计算方法如下[22]

    {\delta _{{\rm{MRE}}}} = \frac{1}{N}\sum\limits_{i = 1}^N {\frac{{\left| {{C_{{\text{D}},{\rm{c}},i}} - {C_{{\text{D}},{\rm{m}},i}}} \right|}}{{{C_{{\text{D}},{\rm{m}},i}}}}} \times 100\% (14)
    {\delta _{{\rm{RMSLE}}}} = \sqrt {\frac{1}{N}\sum\limits_{i = 1}^N {{{\left( {\ln {C_{{\text{D}},{\rm{c}},i}} - \ln {C_{{\text{D}},{\rm{m}},i}}} \right)}^2}} } (15)

    式中:N为总数;CD, c为预测的阻力系数;CD, m为试验测得的阻力系数。

    通过试验得到了颗粒的沉降速度vts,并拟合得到沉降阻力系数CD与颗粒雷诺数Res之间的关系。基于提出的CDRes相关式,可采用迭代试错法计算颗粒在流体中的沉降阻力系数CD和沉降速度vt,迭代程序如图6所示[23]

    图  6  迭代试错程序的流程
    Figure  6.  Flow of iterative trial and error program

    根据提出的球形颗粒阻力系数预测模型(式(13)),采用试错法计算沉降颗粒的阻力系数CD和沉降速度vt,结果见图7图8

    图  7  球形颗粒沉降阻力系数预测值与试验值的对比
    Figure  7.  Comparison between predicted settlement drag coefficient of spherical particles and that measured through experiments
    图  8  球形颗粒沉降速度的预测值与试验值的对比
    Figure  8.  Comparison between predicted settling velocity of spherical particles and that measured throughexperiments

    图7表3可知,对于幂律流体,式(8)、式(9)和式(11)的预测值与试验值较为接近,平均相对误差约为17.17%,式(13)的平均相对误差为7.11%,与其他模型相比,3个量化评价参数均有一定程度的降低,对试验结果的预测精度更高。同时,图8所示的球形颗粒沉降速度预测值与试验测量值平均相对误差仅为7.10%,所以本文提出的模型能较好地预测圆球颗粒在幂律流体中的沉降阻力系数CD和沉降速度vt

    基于上述圆球阻力系数预测模型(式(13)),通过引入颗粒圆形度c建立适用于页岩岩屑的沉降阻力系数CD的表达式。在任意给定的雷诺数下,岩屑受到的拖曳力要大于其等效球体的拖曳力[23]。这是因为,岩屑表面的不规则会导致阻力增加和产生更大的流动分离现象,从而与球形颗粒相比沉降速度有所降低[24]。通过试验观察(见图9),相同条件下岩屑阻力系数CD与球形颗粒的阻力系数预测值CD,sph之比略大于1。在高雷诺数下,由于形状的影响,该比值会更大。

    图  9  224组页岩岩屑数据的CDRes关系
    Figure  9.  CDRes relationship of 224 groups of shale cuttings data

    通过分析相同条件下页岩岩屑试验得到的阻力系数CD与球形颗粒沉降阻力系数预测值CD,sph的差异性,得到了圆形度函数f(c)作为CD/CD,sph自然对数的函数。确定颗粒形状因子cCD/CD,sph之间的关系式为:

    {C_{\text{D}}} = {C_{{\text{D}},{\rm{sph}}}}\exp \left[ {f\left( c \right)} \right] (16)

    在特殊情况下,如c = 1时,页岩岩屑的阻力系数等于相同参数下圆球的阻力系数。即当c = 1时,f(c) = 0。为了确保颗粒为球形时满足CD/CD,sph = 1,结合224组试验数据,通过式(17)确定了f(c)。

    f(c) = \alpha Re_{\rm{s}}^\beta {(1 - c)^\eta } (17)

    式中:αβη为经验系数,可通过非线性拟合得出。

    岩屑在幂律流体中阻力系数CD的表达式为:

    \begin{split} {C_{\text{D}}} = &{C_{{\text{D}},{\rm{sph}}}}{\rm{exp}}\left[ {0.31R{e_{\rm{s}}}^{0.25}{{(1 - c)}^{0.19}}} \right]{\text{ }}\\ &\left( {{\text{0}}{\text{.001 < }}R{e_{\rm{s}}}{\text{ < 99.000}}} \right) \end{split} (18)

    图10所示为式(18)计算所得页岩岩屑沉降阻力系数CD与试验测得沉降阻力系数CD之间的关系。用该模型对页岩岩屑的沉降阻力系数进行了预测,预测结果的平均相对误差为7.68%,均方根对数误差为0.010 9,最大平均相对误差为25.35%。

    图  10  页岩岩屑沉降试验测得阻力系数与模型预测阻力系数的对比
    Figure  10.  Comparison between drag coefficient of shale cuttings measured by settlement experiments and that predicted by the proposed model

    利用式(18)计算了页岩岩屑在幂律流体中的沉降速度,并与试验测得的沉降速度进行了对比(见图11)。对比结果表明,模型预测页岩岩屑在幂律流体中沉降速度的平均相对误差为6.93%。虽然模型预测结果具有一定程度的分散性,但数据在直线上分布良好,说明该模型能较好地预测页岩岩屑在幂律流体中的沉降速度。

    图  11  页岩岩屑沉降速度实测值与模型预测值的对比
    Figure  11.  Comparison between experimentally measured settling velocity of shale cuttings and that predicted by the model

    1)在颗粒雷诺数相同条件下,页岩岩屑的阻力系数随着圆形度减小而增大,阻力系数随雷诺数增大而减小,但在高雷诺数条件下减小的趋势变缓。

    2)相较于具有规则形状的非球形颗粒,测量像岩屑颗粒这样形状高度不规则粗糙颗粒的表面积比较困难,也难以在现场作业中实现。事实上,如何精确测量不规则形状颗粒的表面积,也是圆形度计算中的一个难点。引入二维的侧视面几何参数来预测阻力系数,其精度与引入圆球形模型的预测精度相近。

    3)根据本文建立的岩屑阻力系数预测模型,使用迭代法计算岩屑沉降速度,平均相对误差为6.93%,模型预测结果与试验结果吻合较好。预测模型可为大庆油田古龙页岩油钻井工程现场实践中的井眼清洁和水力参数优化提供理论指导。

    4)由于受试验材料及试验可实现程度的限制,本文在进行颗粒沉降试验时并未使用宾汉流体。对于宾汉流体,沉降阻力系数计算能否采用赫–巴流体(n=1)中的阻力系数预测模型,仍存在不确定性。同时,对高雷诺数以及颗粒群的沉降试验应是今后重点关注和探索的方向之一。

  • 图  1   快速转型情景下全球一次能源需求结构预测

    Figure  1.   Predicted structure of global primary energydemand under rapid transformation

    图  2   主要国际油公司低碳投资规模发展趋势

    Figure  2.   Trends of low-carbon investment scales of majoryinternational oil companies

    图  3   沙特阿美公司CCUS提高采收率项目场景

    Figure  3.   Scenarios of a Saudi Aramco CCUS EOR Project

    表  1   柴油发电机组与双燃料发电机组作业温室气体排放对比

    Table  1   Comparison of greenhouse gas emission by diesel generators and dual-fuel generators in operation

    发电机组作业类别柴油用量/t天然气用量/
    104m3
    温室气体
    排放量/t
    柴油钻井3 593.6209 274
    压裂2 994.6807 728
    双燃料钻井1 437.45212.757 803
    压裂1 197.87177.296 503
    下载: 导出CSV
  • [1] 王敏生. 油气井钻完井作业碳减排发展方向与建议[J]. 石油钻探技术,2022,50(6):1–6.

    WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion[J]. Petroleum Drilling Techniques, 2022, 50(6): 1–6.

    [2] 邹才能,薛华庆,熊波,等. “碳中和” 的内涵、创新与愿景[J]. 天然气工业,2021,41(8):46–57.

    ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation, innovation and vision of “carbon neutral”[J]. Natural Gas Industry, 2021, 41(8): 46–57.

    [3] 匡立春,邹才能,黄维和,等. 碳达峰碳中和愿景下中国能源需求预测与转型发展趋势[J]. 石油科技论坛,2022,41(1):9–17. doi: 10.3969/j.issn.1002-302x.2022.01.002

    KUANG Lichun, ZOU Caineng, HUANG Weihe, et al. China’s energy demand projection and energy transition trends under carbon peak and carbon neutrality situation[J]. Petroleum Science and Te-chnology Forum, 2022, 41(1): 9–17. doi: 10.3969/j.issn.1002-302x.2022.01.002

    [4] 王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6. doi: 10.11911/syztjs.2021070

    WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6. doi: 10.11911/syztjs.2021070

    [5]

    WILEMS M. Energy transition: Oil and gas industry at a crossroads[J]. World Oil, 2022, 243(3): 30–34.

    [6]

    PORTER S O, DICKSON D, HARDIN K, et al. Oil, gas, and the energy transition: How the oil and gas industry can prepare for a lower-carbon future[EB/OL]. [2022-10-29].https://www2.deloitte.com/us/en/insights/industry/oil-and-gas/oil-gas-energy-sector-disruption.html.

    [7]

    WMO. WMO update: 50∶50 chance of global temperature temporarily reaching 1.5 ℃ threshold in next five years[EB/OL]. (2022-05-09)[2022-10-28].https://public.wmo.int/en/media/press-release/wmo-update-5050-chance-of-global-temperature-temporarily-reaching-15%C2%B0c-threshold?stream=top.

    [8]

    CIKD. Global development report[EB/OL]. (2022-06-20)[2022-11-05]. http://www.cikd.org/detail?docId= 1538692320059240449.

    [9]

    BP. Statistical review of world energy 2022[EB/OL]. [2022-11-03].https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html.

    [10] 余岭,李春烁,唐旭伟,等. 国外石油公司能源转型的主要特点及其启示[J]. 国际石油经济,2022,30(3):44–51. doi: 10.3969/j.issn.1004-7298.2022.03.006

    YU Ling, LI Chunshuo, TANG Xuwei, et al. Main characteristics of energy transition of foreign oil companies and its enlightenments[J]. International Petroleum Economics, 2022, 30(3): 44–51. doi: 10.3969/j.issn.1004-7298.2022.03.006

    [11] 范旭强,陈明卓,余岭. 国际油服公司转型发展战略及思考[J]. 国际石油经济,2021,29(9):8–15.

    FAN Xuqiang, CHEN Mingzhuo, YU Ling. Transformation and development strategy of international oilfield service company[J]. International Petroleum Economics, 2021, 29(9): 8–15.

    [12]

    PARNELL J. BP adopts $100 carbon price assumption for 2030, with big implications for clean energy[EB/OL]. (2020-06-16)[2022-11-05].https://www.greentechmedia.com/articles/read/european-oil- majors-ready-to-scale-up-energy-transition-investment.

    [13]

    Baker Hughes. We are taking energy forward: the path to net-zero and a sustainable energy future[EB/OL]. [2022-11-06]. https://www.bakerhughes.com/sites/bakerhughes/files/2021-01/Baker%20Hughes%20-% 20The%20path%20to%20net-zero%20and%20a%20sustainable%20energy%20future_0.pdf.

    [14]

    IADC. Oil & gas markets: Rystad Energy: Permian is ‘entering a 3-mile lateral era’[EB/OL]. (2022-03-15) [2022-11-06]. https://drillingcontractor.org/oil-gas-markets-62535.

    [15]

    MACPHERSON J, KNIGHT S, DEWARDT J. Automation of directional drilling system with remote supervisory control allows mile-a-day wells to be achieved in Appalachian Basin[J]. Drilling Contractor, 2018, 74(5): 32–37.

    [16]

    ALGADI O, MCLAUGHLIN N, WILPITZ L, et al. Simultaneous fracturing operations: successful implementation and lessons learned[R]. SPE 205892, 2021.

    [17]

    SHUMWAY M. Building a better shale well with biosurfactants improves production and ROI[J]. World Oil, 2022, 243(1): 35–38.

    [18]

    MCELFRESH P, HOLCOMB D, ECTOR D. Application of nanofluid technology to improve recovery in oil and gas wells[R]. SPE 154827, 2012.

    [19]

    YATES M R, BRAHIM I B, ALNOFAILY S M, et al. Sustaining remote operations adoption post pandemic: A major key to a net zero future[R]. SPE 205440, 2021.

    [20]

    WANG Lei, STEWART C. Real-time operations center drives new ESG opportunities by integrating personnel and data[J]. World Oil, 2022, 243(4): 29–33.

    [21]

    MCCULLOUGH D. Decarbonizing with digital: Improving drilling and well construction performance, sustainably[J]. World Oil, 2021, 242(9): 45–48.

    [22]

    BELLO P. The role of digitalization in decarbonizing the oil and gas industry[R]. SPE 207125, 2021.

    [23]

    GARZA J. Digitizing operations increases completion efficiency, addresses environmental and cost challenges[J]. World Oil, 2022, 243(1): 19–23.

    [24] 李阳,廉培庆,薛兆杰,等. 大数据及人工智能在油气田开发中的应用现状及展望[J]. 中国石油大学学报(自然科学版),2020,44(4):1–11.

    LI Yang, LIAN Peiqing, XUE Zhaojie, et al. Application status and prospect of big data and artificial intelligence in oil and gas field development[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 1–11.

    [25]

    POMERANTZ A E, ERIKSSON S T. Tackling methane emissions: It’s time to act[J]. World Oil, 2022, 243(3): 22–26.

    [26]

    FORS T. Capturing the potential of CCUS[J]. World Oil, 2022, 243(3): 47–49.

    [27]

    TAVASSOLI S, KRISHNAMURTHY P, BECKHAM E, et al. CO2 storage in deltaic saline aquifers: Invasion percolation and compositional simulation[R]. SPE 196723, 2019.

    [28] 柏明星,张志超,白华明,等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏,2022,29(4):1–11. doi: 10.3969/j.issn.1006-6535.2022.04.001

    BAI Mingxing, ZHANG Zhichao, BAI Huaming, et al. Progress in leakage risk study of CO2 geosequestration system[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 1–11. doi: 10.3969/j.issn.1006-6535.2022.04.001

    [29] 宋新民,王峰,马德胜,等. 中国石油二氧化碳捕集、驱油与埋存技术进展及展望[J]. 石油勘探与开发,2023,50(1):206–218. doi: 10.11698/PED.20220366

    SONG Xinmin, WANG Feng, MA Desheng, et al. Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields[J]. Petroleum Exploration and Development, 2023, 50(1): 206–218. doi: 10.11698/PED.20220366

    [30] 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率,2020,27(1):1–10.

    LI Yang. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 1–10.

    [31] 李阳,黄文欢,金勇,等. 双碳愿景下中国石化不同油藏类型CO2驱提高采收率技术发展与应用[J]. 油气藏评价与开发,2021,11(6):793–804.

    LI Yang, HUANG Wenhuan, JIN Yong, et al. Different reservoir types of CO2 flooding in Sinopec EOR technology development and application under “dual carbon” vision[J]. Reservoir Evaluation and Development, 2021, 11(6): 793–804.

    [32]

    ARAMCO. Aramco comes up ACES with Green Initiative award[EB/OL]. (2020-12-08)[2022-11-02].https://www.aramcolife. com/en/publications/the-arabian-sun/articles/2020/week-50/aces-award.

    [33]

    CEYHAN I, PILISI N, SURYANARAYANA P V, et al. Design of carbon capture and sequestration CCS wells[R]. SPE 208738, 2022.

    [34]

    WHITFIELD S. Automation-enabled fuel efficiency leads onshore drilling ESG[J]. Drilling Contractor, 2021, 77(5): 20–25.

    [35]

    FU Dan, ZEMLAK W, YEUNG T. Natural gas-powered, direct-drive turbine fracturing technology delivers variety of improvements[J]. World Oil, 2022, 243(9): 19–22.

    [36]

    EYGUN C, BELGAROUI J, WU Yang, et al. Mitigating shale gas developments carbon footprint: Evaluating and implementing solutions in Argentina[R]. URTEC 2687987, 2017.

    [37]

    SETTEMSDAL S. Applications of lithium-ion batteries in offshore oil & gas: The journey to building a low-emissions drilling rig[R]. OTC 30923, 2021.

    [38]

    DELAPLACE T, MAUGÉ R. Decarbonization impact and system optimization of wind integrated solutions for offshore systems local powering[R]. OTC 31772, 2022.

    [39]

    GORDON S. Global offshore wind capacity achieves record growth[J]. World Oil, 2022, 243(4): 56–57.

    [40]

    SETTEMSDAL S O. Applying energy storage solutions ESS in offshore oil and gas to reduce emissions and costs[R]. SPE 195777, 2019.

    [41]

    WHITFIELD S. ‘Green’ innovations flourish amid drive for lower emissions[J]. Drilling Contractor, 2021, 77(5): 12–19.

    [42]

    PILKO R M, HART-WAGONER N R, VAN HORN A J, et al. Repurposing oil & gas wells and drilling operations for geothermal energy production[R]. OTC 31090, 2021.

    [43] 柏明星,宋考平,徐宝成,等. 氢气地下存储的可行性、局限性及发展前景[J]. 地质论评,2014,60(4):748–754. doi: 10.16509/j.georeview.2014.04.024

    BAI Mingxing, SONG Kaoping, XU Baocheng, et al. Feasibility, limitation and prospect of H2 underground storage[J]. Geological Review, 2014, 60(4): 748–754. doi: 10.16509/j.georeview.2014.04.024

    [44] 付盼,罗淼,夏焱,等. 氢气地下存储技术现状及难点研究[J]. 中国井矿盐,2020,51(6):19–23. doi: 10.3969/j.issn.1001-0335.2020.06.008

    FU Pan, LUO Miao, XIA Yan, et al. Research on status and difficulties of hydrogen underground storage technology[J]. China Well and Rock Salt, 2020, 51(6): 19–23. doi: 10.3969/j.issn.1001-0335.2020.06.008

  • 期刊类型引用(2)

    1. 荆思霖,宋先知,孙一,许争鸣,周蒙蒙. 基于压差法的水平井岩屑床轴向运移规律研究. 石油钻探技术. 2024(01): 54-61 . 本站查看
    2. 耿明亮,王艳萍,邓晓烽,祖也航,李昳. 单颗粒和双颗粒在聚丙烯酰胺溶液中沉降过程的数值模拟. 浙江理工大学学报(自然科学). 2024(05): 674-680 . 百度学术

    其他类型引用(2)

图(3)  /  表(1)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  190
  • PDF下载量:  144
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-11-13
  • 修回日期:  2023-03-29
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回