Processing math: 0%

PDC钻头钻井提速关键影响因素研究

高德利, 刘维, 万绪新, 郭勇

高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022
引用本文: 高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022
GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022
Citation: GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34. DOI: 10.11911/syztjs.2023022

PDC钻头钻井提速关键影响因素研究

基金项目: 国家自然科学基金重点项目“复杂结构‘井工厂’立体设计建设基础研究”(编号:52234002)、国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51821092)、中国石油大学(北京)科研启动基金项目“高效钻头的研究”(编号:ZX20190065)联合资助
详细信息
    作者简介:

    高德利(1958—),男,山东禹城人,1982年毕业于华东石油学院钻井工程专业,1984年获西南石油学院石油矿场机械专业硕士学位,1990年获石油大学油气田开发工程专业博士学位,教授,中国科学院院士,长期从事复杂油气井工程领域的科学研究与实践。系本刊编委。E-mail: gaodeli@cup.edu.cn。

  • 中图分类号: TE21

Study on Key Factors Influencing the ROP Improvement of PDC Bits

  • 摘要:

    为了在钻井工程中发挥出PDC钻头的最大功效,通过理论分析、室内试验、案例分析、现场试验等,探讨了高钻压、高转速等钻井参数强化对PDC钻头钻速和磨损的影响规律,同时分析了PDC钻头的磨损机理与过早失效主因。研究结果表明:1)钻压是影响PDC钻头机械钻速的直接和首选因素,当钻头处于高效破岩状态时,无论钻遇一般地层还是硬岩地层,钻压与机械钻速均应呈线性关系;钻遇均质硬岩地层时,建议将200 kN以上高钻压纳入PDC钻头的常规应用参数;2)提高转速可实现钻井提速,虽然高转速会加剧PDC钻头的磨损,但目前切削齿的质量足以满足PDC钻头在高转速(400~500 r/min)下长时间钻进多数地层的需求;3)布齿密度对钻头机械钻速有影响,但并非直接因素,只要“吃得进去,切得下来,排得及时”三者建立动态平衡,即便是高布齿密度PDC钻头也可以实现优快钻进;4)PDC钻头破岩效率越高,钻头磨损会越小,如提高钻压,会增大切削齿吃入深度、减少钻头磨损;5)动态冲击和低效破岩是造成PDC切削齿和钻头过早失效的主因,实现PDC钻头高效钻进的核心是提高破岩效率与抑制钻头振动。该研究结果对PDC钻头合理使用与钻井提速技术创新具有参考意义。

    Abstract:

    For the maximization of the efficacy of the polycrystalline diamond compact (PDC) bits in drilling engineering, comprehensive research, including theoretical analysis, laboratory test, case study, and on-site trials, was conducted to investigate how a high weight-on-bit (WOB), a high rotary speed, and other optimized drilling parameters work on the rate of penetration (ROP) and the wear of a PDC bit. Furthermore, the wear mechanism of the PDC bit and the primary cause of the premature failure of the bit were analyzed. The results indicated that: 1) The ROP of the PDC bit was directly and primarily affected by the WOB. When the bit was in an efficient rock-breaking state, the WOB was invariably in a linear relationship with the ROP whether the formation encountered was a conventional one or a hard rock formation. Adding a high WOB over 200 kN into the normal pressurization range of the PDC bit was recommended if the formation encountered was a homogeneous hard rock formation. 2) ROP improvement could be achieved by enhancing the rotary speed. Although the wear of the PDC bit could be aggravated by a high rotary speed, the requirement on a PDC bit to penetrate most formations for a long time at a high rotary speed (400–500 r/min) could be readily met by the quality of the currently available PDC cutter. 3) The ROP of the bit was also affected by cutter density, but not in a direct manner. As long as a dynamic balance among “capabilities to bite into the formation, cut the rock, and evacuate the cuttings in time” was reached, the optimized fast drilling could be achieved even by a PDC bit with a high cutter density. 4) The wear of the PDC bit was less severe under the higher rock-breaking efficiency of the bit. The WOB could be enhanced to improve the ROP and reduce bit wear. 5) Dynamic impact and inefficient rock-breaking were considered the primary causes of the premature failure of the PDC cutter and bit. The key for the PDC bit to achieve efficient penetration was improving rock-breaking efficiency and restraining bit vibration. The above results could be used as a reference for the proper utilization of PDC bits and the innovation of ROP improvement technologies.

  • 我国碳酸盐岩油气资源丰富,已经成为油气勘探开发的重要领域。碳酸盐岩储层具有埋藏深、超高温、超高压、非均质性强和孔隙缝洞发育等特征,大部分井需要进行酸化压裂才能投产[1-8]。缝洞型碳酸盐岩储层由于存在天然裂缝和孔洞体,孔洞体会导致附近应力场发生改变,从而影响水力裂缝的扩展方式和延伸路径[9]。因此,有必要开展孔洞型碳酸盐岩储层压裂缝扩展机理研究,为经济高效开发碳酸岩盐储层提供技术支持。

    目前,国内外学者针对砂岩、页岩等储层水力压裂裂缝起裂扩展机理开展了大量研究工作[10-21]。由于碳酸盐岩储层存在孔洞和天然裂缝,水力裂缝的扩展十分复杂,并不一定沿预设路径进行扩展,难以达到充分改造储层的目的。为此,笔者通过物理模拟试验建立了含孔洞碳酸盐岩定向压裂裂缝扩展模拟方法,结合数值方法研究了水平地应力差异对不同孔洞体特征下水力裂缝扩展路径的作用机制,明确了孔洞体对水力裂缝起裂和扩展的影响。

    碳酸盐岩天然露头不易取得,而且即使取得天然露头,也难以识别与评价大尺寸试样内部原有天然裂缝及孔洞系统分布。因此,采用人工制备的含孔洞碳酸盐岩试样,开展水力压裂试验。利用鸡蛋壳模拟孔洞体,结合缝洞型碳酸盐岩储层的物性参数及地质特征,选用PC52.5R复合硅酸盐水泥和70目石英砂制备试样。通过测试水泥与石英砂按不同质量比制备试样的单轴抗压和抗拉强度,确定水泥与石英砂按1∶1质量比制备尺寸300 mm×300 mm×300 mm含孔洞体特征的人工试样,用于进行孔洞型试样定向压裂试验。制作人工试样时,在模具上标记位置,将蛋壳体放置在预制井筒两侧沿最大水平主应力方向的中间位置,并保证蛋壳体中心位于立方体试样的中心平面上(见图1),采用一次性整体浇筑方式浇筑。

    图  1  制备含孔洞试样示意
    Figure  1.  Preparation of samples with cavities

    为研究水平地应力差异对孔洞型碳酸盐岩压裂缝扩展路径的影响,采用鸡蛋壳预制固定孔洞尺寸的人工试样。结合顺北地区碳酸盐岩储层地应力实际情况,设定室内压裂试验的三向加载应力,在此基础上改变地应力差异系数。试验参数如表1所示,三向地应力加载如图2所示,压裂液黏度为50 mPa·s。

    表  1  碳酸盐岩试样压裂试验参数
    Table  1.  Fracturing test parameters of carbonate rock samples
    试样应力差
    异系数k
    {\sigma_{⃑\text{v}}} /
    MPa
    {\sigma _{\text{H}}} /
    MPa
    {\sigma _{\text{h}}} /
    MPa
    Q/(mL·min−1
    D10.361815115
    D20.251815125
    D30.151815135
    D40.071815145
    下载: 导出CSV 
    | 显示表格
    图  2  孔洞布置及地应力加载方向示意
    Figure  2.  Cavity distribution and in-situ stress loading direction

    不同试样的水力裂缝扩展泵压–时间曲线如图3所示。由图3可以看出:试样D1所对应的泵压–时间曲线出现2个峰值,表明泵压在第一次达到峰值时试样发生破裂,但未形成贯穿通道;泵压降低后,随着继续泵注压裂液,泵压升高,再次出现峰值,但低于初次峰值,泵压第二次达到峰值降低后维持在一个相对稳定的值,表明泵压主要克服施加的三向地应力,已经形成贯穿通道。试样D2所对应泵压–时间曲线只出现一个峰值,表明在泵压达到峰值时就形成了贯穿通道,由于围压的存在,泵压维持在一个相对稳定的值。试样D3和D4所对应泵压–时间曲线均出现多个峰值,泵压在第一次达到峰值时裂缝起裂扩展,随后泵压出现多次降低升高的过程,表明水力裂缝在不断扩展,并有新的裂缝通道开启,且试样D4所对应泵压–时间曲线反复降低升高的时间范围大于试样D3。

    图  3  不同试样的水力裂缝扩展泵压–时间曲线
    Figure  3.  Pumping pressure-time curve of hydraulic fracture propagation of different samples

    不同水平主应力差下试样的破裂压力如图4所示。由图4可以看出,随着水平主应力差增大,试样所对应的破裂压力逐渐降低。

    图  4  试样不同水平主应力差下的破裂压力
    Figure  4.  Fracture pressure of samples under different horizontal principal stress differences

    图5为试样D1水力裂缝的形态。由图5可以看出,试样D1的水力裂缝沿最大水平主应力方向起裂扩展,遇到孔洞后直接穿过孔洞并继续沿原扩展方向延伸,水力裂缝未发生转向,从而形成一条垂直于最小水平主应力的破裂面。

    图  5  试样D1水力裂缝的形态
    Figure  5.  Pattern of hydraulic fracture in Sample D1

    图6为试样D2水力裂缝的形态。由图6可以看出:试样D2的水力裂缝沿最大水平主应力方向起裂扩展,裂缝扩展到孔洞附近时路径并没有发生改变;由该试样水力裂缝表面示踪剂分布范围可知,孔洞右侧没有示踪剂分布,表明水力裂缝沿着最大水平主应力一直扩展到孔洞体边界,随后因为孔洞体的存在裂缝停止扩展,形成一道垂直于最小水平主应力的破裂面。

    图  6  试样D2水力裂缝的形态
    Figure  6.  Pattern of hydraulic fracture in Sample D2

    试样D3孔洞体周围没有红色示踪剂(见图7),但可以观察到孔洞体的存在,说明水力裂缝扩展到孔洞体附近时,沿最小水平主应力方向发生转向但偏转距离不大。试样D4破裂面左半面完全被红色示踪剂浸染(见图8),且无法观察到孔洞体的存在,说明水力裂缝扩展到孔洞体附近时发生转向,扩展路径完全绕过了孔洞体。可以看出,试样D4水力裂缝的转向效果比试样D3更明显,水力裂缝开始转向的位置与井筒的距离也更近。

    图  7  试样D3水力裂缝的形态
    Figure  7.  Pattern of hydraulic fracture in Sample D3
    图  8  试样D4水力裂缝的形态
    Figure  8.  Pattern of hydraulic fracture in Sample D4

    总结了不同水平主应力差异系数下水力裂缝的形态,结果见图9。由图9可以看出:水平主应力差异系数k为0.07时,孔洞体的存在改变了水平主应力差对水力裂缝扩展的主导地位;水平主应力差异系数k为0.15时,水平主应力差对水力裂缝的扩展路径起主导作用,由于孔洞体产生的应力集中无法改变水平主应力差对水力裂缝扩展的主控地位,水力裂缝均沿最大水平主应力方向起裂扩展,形成一条完整的垂直于最小水平主应力的破裂面,但不同条件下孔洞体与裂缝的交互作用不同;水平主应力差异系数k为0.25时,水力裂缝扩展到孔洞体边界时会被孔洞体捕捉,不再继续沿原路径向前扩展;水平主应力差异系数k为0.36时,水力裂缝扩展到孔洞体时会穿过孔洞,并继续向前扩展。由以上分析可以看出,水平主应力差异系数为0.15~0.36时,水平主应力差异系数越小,孔洞体对水力裂缝的排斥作用越明显,水力裂缝越容易发生转向,对应的转向半径越大,水力裂缝会绕过孔洞体继续扩展,水力裂缝扩展过程中与最大水平主应力方向上孔洞体的交互作用有绕过孔洞、被孔洞体捕获和穿过孔洞体等3种交互模式。

    图  9  不同水平主应力差异系数下的裂缝形态示意
    Figure  9.  Fracture pattern under different horizontal principalstress difference coefficients

    通过分析不同水平主应力差异系数下含预制孔洞试样水力压裂试验结果,得到水平主应力差异系数对水力裂缝扩展的影响规律:

    1)k≤0.15时,水力裂缝遇到孔洞体会产生非平面扩展,且水平主应力差异系数越小,转向半径越大,水力裂缝的形态越复杂。

    2)0.15<k<0.36时,水平主应力差会克服孔洞体应力集中形成沿平面扩展的主裂缝,室内试验条件下主裂缝遇到孔洞体后会被孔洞体所捕捉,无法穿过孔洞体继续扩展。

    3)k≥0.36时,水平主应力差会克服孔洞体应力集中,水力裂缝沿平面扩展,主裂缝扩展路径上遇到孔洞体后会直接穿过孔洞体继续扩展。随着水平主应力差增大,破裂压力逐渐降低。

    水平主应力差对水力裂缝扩展路径影响明显,由于真三轴压裂物理模拟试验无法在更大尺度上模拟水力裂缝的扩展特征,因此利用数值模拟方法分析不同水平主应力差下水力裂缝遇到孔洞体后的扩展形态。目前,多采用有限元法模拟水力压裂裂缝的扩展[16-20, 22],通过离散法将一个实体模型转化为一系列相互连接的微小单元。笔者采用扩展有限元法,建立水力压裂流–固耦合分析模型,分析孔洞型碳酸盐岩不同地应力状态及孔洞体分布特征对水力裂缝扩展路径的影响。

    利用扩展有限元法模拟水力压裂,无需提前设置裂缝扩展路径,只需在模型上预制初始裂缝,然后在网格节点内部设置注液点。单一孔洞模型尺寸为40 m×40 m,网格尺寸设置为0.30 m×0.30 m;初始裂缝长2.00 m,垂直于模型左侧边界,在模型中心上方0.40 m处;注液点在网格节点之间。模型边界均采用位移约束,且为渗透边界条件。

    以顺北油气田某区块碳酸盐岩储层为例,地应力参数设置情况如表2所示,孔洞半径为3 m,储层渗透率为0.11 mD,压裂液黏度为50 mPa·s,排量为5 m3/min,储层压力梯度为1.78 MPa/100m。模拟不同水平主应力下水力裂缝扩展的特征和路径,结果如图10所示。

    表  2  数值模拟地应力参数设置
    Table  2.  Parameter setting of in-situ stress in numerical simulation
    序号 {\sigma _{\text{H}}} /MPa {\sigma _{\text{h}}} / MPa \Dela \sigma / MPa泊松比弹性模
    量/GPa
    Biot
    系数
    1757050.1938.540.87
    26510
    36015
    45520
    下载: 导出CSV 
    | 显示表格
    图  10  不同水平主应力差下水力裂缝扩展的特征和路径
    Figure  10.  Propagation characteristics and paths of hydraulic fractures under different horizontal principal stress differences

    对比不同水平地应力差下水力裂缝的扩展路径可知(图10):水平主应力差越小,水力裂缝扩展路径偏离最大水平主应力方向的距离越大,孔洞体所产生的应力集中对水力裂缝扩展路径的影响越明显;相反,水平主应力差越大,水力裂缝扩展路径越不容易偏离最大水平主应力方向;水平主应力差大于15 MPa(即水平主应力差异系数大于0.25)时,水力裂缝扩展过程中未发生偏转,一直沿最大水平主应力方向扩展,直到与孔洞体沟通。因此,在只有孔洞存在的条件下,水平主应力差越大(即水平主应力差异系数越大),克服孔洞体应力集中的能力越强,裂缝越易于沟通最大水平主应力方向上的孔洞体。

    碳酸盐岩储层中孔洞体形态各异,尺寸大小不一,需要研究其对水力裂缝扩展的影响。设定初始裂缝与最大水平主应力方向夹角为0°,最大水平主应力为75 MPa,最小水平主应力为65 MPa,孔洞内压力设置为50 MPa,模拟孔洞半径分别为1,2,3和4 m时的水力裂缝扩展特征和路径,结果如图11图12所示。

    图  11  含不同半径孔洞模型水力裂缝扩展特征
    Figure  11.  Propagation characteristics of hydraulic fractures in models with different radii cavities
    图  12  含不同半径孔洞模型水力裂缝扩展路径
    Figure  12.  Propagation paths for hydraulic fractures in models with cavities of different radii

    图11图12可以看出:孔洞半径为1 m时,水力裂缝扩张路径不发生偏转,直接沿最大水平主应力方向延伸,直至与孔洞沟通;孔洞半径分别为2,3和4 m时,水力裂缝扩展路径均不同程度地偏离最大水平主应力方向;孔洞半径较小时,水力裂缝偏离最大水平主应力方向的距离较小;随孔洞半径增大,水力裂缝偏离最大水平主应力方向的时间提前,同时偏离最大水平主应力的距离增大。

    碳酸盐岩储层中存在多个连续分布的孔洞时,由单个孔洞体对水力裂缝扩展影响的模拟结果可知,孔洞半径和水平主应力差会影响裂缝与孔洞的交互模式;孔洞半径较小或水平主应力差较大时,水力裂缝会被孔洞体捕捉或直接穿过孔洞体。水平主应力差是水力裂缝扩展的主控因素,也是分析连续分布孔洞体对水力裂缝影响时考虑的首要影响因素。

    建立孔洞体连续分布模型,地应力取值见表2,孔洞半径设置为1.50 m,模拟连续分布孔洞体下水力裂缝的扩展特征,结果如图13所示。

    图  13  孔洞连续分布模型不同水平主应力差下水力裂缝扩展特征
    Figure  13.  Propagation characteristics of hydraulic fractures in models with continuous cavity distribution under different horizontal principal stress differences

    图13可以看出:水平主应力差依然是影响水力裂缝扩展的主控因素;水平主应力差越小( \Delta \sigma =5 MPa),水力裂缝越容易转向绕过孔洞体;连续孔洞体所产生的应力集中区域也同样连续分布,所以水力裂缝在第1个孔洞被排斥发生转向后,会一直沿着应力集中区域的边界向前扩展;随着水平主应力差增大,能够克服第1个孔洞产生的应力集中,水力裂缝与第1个孔洞出现被孔洞捕获( \Delta \sigma =10 MPa)和穿过孔洞( \Delta \sigma =15 MPa)2种交互模式;穿过孔洞的水力裂缝沿最大水平主应力方向继续扩展,进入第2个孔洞产生的应力集中区域,水力裂缝与第2个孔洞的交互作用同样随水平主应力差变化而变化,会出现绕过孔洞( \Delta \sigma =15 MPa)、被孔洞捕获( \Delta \sigma =20 MPa)和穿过孔洞( \Delta \sigma >20 MPa)3种交互模式。

    由于水力裂缝扩展中穿过孔洞体伴随着能量的耗散,导致在相同水平主应力差下,水力裂缝穿过第1个孔洞后不一定能够穿过第2个孔洞。孔洞连续分布使应力集中区域增大,若要沟通连续孔洞体,需要进一步开展多因素分析。

    1)孔洞体直接影响水力裂缝的扩展形态与扩展路径。水平主应力差异系数不大于0.15时,水力裂缝遇到孔洞体后会发生非平面扩展,且水平主应力差越小,水力裂缝偏离最大水平主应力方向的距离越大,压裂后水力裂缝的形态越复杂。

    2)水平主应力差异系数大于0.15、小于0.36时,水平主应力差会克服孔洞体应力集中的影响形成平面扩展的水力裂缝,但遇到孔洞体后会被孔洞体所捕捉,无法穿过孔洞体继续扩展。

    3)水平主应力差异系数不小于0.36时,水平主应力差会克服孔洞体应力集中,使水力裂缝沿平面进行扩展,且遇到孔洞后会直接穿过孔洞体后继续沿原路径扩展;随着水平主应力差增大,水力裂缝所对应的破裂压力逐渐降低。

    4)受地应力条件、孔洞体特征等的影响,碳酸盐岩储层中水力裂缝扩展复杂,下一步可参照文中思路,探索碳酸盐岩储层中水力裂缝在不同地应力特征、不规则孔洞和不同压裂施工参数等条件下的扩展规律,为压裂设计提供依据。

  • 图  1   钻头高效破岩时钻压与机械钻速的关系示意

    Figure  1.   Relationship between WOB and ROP during efficient rock-breaking of the bit

    图  2   岩性和齿形对钻压与机械钻速之间关系曲线的影响

    Figure  2.   Effects of lithology and cutter shape on relationship curve between WOB and ROP

    图  3   “异常”因素作用时钻压与机械钻速的关系示意

    Figure  3.   Relationship between WOB and ROP under influences of “abnormal” factors

    图  4   脱钴PDC切削齿的磨损面积与其行进距离的关系

    Figure  4.   Relationship between wear area and travel distance of leached PDC cutter

    图  5   相同进尺下PDC钻头吃入深度与切削齿行进距离的关系

    Figure  5.   Relationship between cut depth of PDC bit and travel distance of cutter under the same drilling footage

    图  6   相同进尺下PDC钻头吃入深度与切削齿磨损体积的对应关系

    Figure  6.   Relationship between the wear volume loss of PDC cutter and the cut depth under the same footage

    图  7   转速对PDC切削齿磨损体积的影响

    Figure  7.   Effect of rotary speed on wear volume of PDC cutter

    图  8   胜利油田罗家区块二开钻井指标

    Figure  8.   Drilling data from Luojia block in Shengli Oilfield

    图  9   NPD的耐磨性和抗冲击性测试示意

    Figure  9.   Wear resistance and impact resistance tests of nano-polycrystalline diamond (NPD)

    图  10   135°斧形齿钻遇花岗岩时发生冲击失效

    Figure  10.   Impact-induced failure of 135° axe-shaped teeth when encountering granite

    图  11   PDC钻头的破岩、耐用、稳定一体化综合评价体系示意

    Figure  11.   Comprehensive evaluation system integrating rock-breaking efficiency, durability, and stability of PDC bit

    图  12   PDC切削齿聚晶金刚石层的横截面

    Figure  12.   Cross-sections of polycrystalline diamond layer of PDC cutter

    图  13   脱钴和未脱钴PDC切削齿的磨损体积与行进距离的关系

    Figure  13.   Relationships between wear volumes and travel distances of leached and non-leached PDC cutters

    图  14   抗冲击性测试后的未脱钴PDC切削齿形貌

    Figure  14.   Morphology of non-leached PDC cutter after impact resistance test

    图  15   PDC切削齿的典型出井状况

    Figure  15.   Typical dull conditions of PDC cutters pulled out of hole

    图  16   X射线检测的PDC切削齿脱钴深度

    Figure  16.   Leached depth of PDC cutters detected by X-ray

    图  17   未脱钴PDC切削齿的出井形貌

    Figure  17.   Morphology of non-leached PDC cutters pulled out of hole

    图  18   与图7对应的切削齿磨口形貌

    Figure  18.   Wear scar morphology of PDC cutter corresponding to Fig.7

    表  1   VTL试验参数

    Table  1   Vertical turning lathe (VTL) test parameters

    试验
    编号
    每圈吃入
    深度/mm
    总的行进
    距离/m
    切削深度/
    mm
    线速度/
    (m·min−1
    #10.568 09760100
    #21.034 049
    #31.522 699
    #42.017 024
    #52.513 619
    #63.011 350
    #71.034 0496020
    #834 04960
    #934 049100
    #1034 049140
    下载: 导出CSV

    表  2   高速螺杆与常规螺杆参数对比

    Table  2   Parameter comparison between high-speed motor and conventional motor

    螺杆类型钻压/kN工作排量/
    (L·min−1
    输出扭矩/(N·m)顶驱转速 /
    (r·min−1
    钻头转速 /
    (r·min−1
    ϕ172.0 mm高速螺杆60~1002200886960~80380~400
    ϕ172.0 mm常规螺杆60~15022001275060~80220~240
    下载: 导出CSV

    表  3   玛南风城组不同钻具组合的钻井指标

    Table  3   Drilling performances of various bottom-hole assemblies in Fengcheng Formation on southern slope of Mahu Sag

    试验井钻头井下动力钻具单趟平均进尺/m平均机械钻速/(m·h−1井型完钻时间
    JL53井牙轮钻头、PDC钻头、复合钻头<50<1.3直井2020年
    JL56井异形齿PDC钻头常规螺杆882.0直井2020年
    MH48井孕镶钻头涡轮1931.8直井2020年
    MN520井PDC钻头旋导861.2水平井造斜段2021年
    PDC钻头高速螺杆5784.8水平井水平段
    MN272井PDC钻头高速螺杆10088.2水平井水平段2022年
    下载: 导出CSV

    表  4   胜利油田常规钻井参数与强化钻井参数对比

    Table  4   Comparison of conventional and enhanced drilling parameters in Shengli Oilfield

    钻井参数类型钻压/kN顶驱转速 /(r·min−1排量/(L·s−1泵压/MPa提速工具
    常规钻井参数40~80704015螺杆
    强化钻井参数100~12070~80>70>20大扭矩螺杆
    下载: 导出CSV

    表  5   美国FORGE 78B-32井TKC83型PDC钻头钻井指标

    Table  5   Drilling data of TKC83 PDC bit in FORGE Well 78B-32

    趟钻数钻头直径/mm入井井深/m进尺/m平均机械钻速/(m·h−1钻压/kN顶驱转速/(r·min−1排量/(L·s−1钻遇岩性
    7269.91 112.8643.120.429540.051.7花岗闪长岩
    9269.91 774.2267.922.329550.050.5花岗闪长岩
    13269.92 055.0265.521.229545.052.4花岗闪长岩
    14269.92 320.5270.422.529550.052.4花岗闪长岩
    下载: 导出CSV
  • [1]

    TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57–73.

    [2]

    IADC Drilling Manual. Mechanics and performance[M]. 12th ed. Houston: International Association of Drilling Contractors, 2014.

    [3]

    DUPRIEST F E, KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[R]. SPE 92194, 2005.

    [4]

    DUPRIEST F E, WITT J W, REMMERT S M. Maximizing ROP with real-time analysis of digital data and MSE[R]. IPTC 10607, 2005.

    [5]

    DUPRIEST F E. Comprehensive drill-rate management process to maximize rate of penetration[R]. SPE 102210, 2006.

    [6]

    DUPRIEST F E, NOYNAERT S, CUNNINGHAM T, et al. Maximizing drilling performance through the Delaware Basin brushy canyon and interbedded formations[R]. SPE 199599, 2020.

    [7]

    DUPRIEST F, PASTUSEK P, LAI S, et al. Standardization of mechanical specific energy equations and nomenclature[R]. SPE 208777, 2022.

    [8]

    WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: data collection and workflow required to conduct bit forensics and create effective changes in practices or design[R]. SPE 208712, 2022.

    [9]

    DUPRIEST F, NOYNAERT S. Drilling practices and workflows for geothermal operations[R]. SPE 208798, 2022.

    [10]

    K&M Technology Group. Pre-tour with K&M technology group-limiter identification and redesign with Fred Dupriest[EB/OL]. (2021-01-22)[2022-12-01].https://www.youtube.com/watch?v=tiBrMF0TBdg.

    [11]

    SUGIURA J, LOPEZ R, BORJAS F, et al. Oil and gas drilling optimization technologies applied successfully to unconventional geothermal well drilling[R]. SPE 205965, 2021.

    [12]

    Energy and Geoscience Institute at the University of Utah. Utah FORGE: Well 16A(78)-32 drilling data[DB/OL]. (2021-01-08) [2022-12-01].https://doi.org/10.15121/1776602.

    [13]

    Energy and Geoscience Institute at the University of Utah. Utah FORGE Well 78B-32 daily drilling reports and logs[DB/OL]. (2021-08-09) [2022-12-01].https://doi.org/10.15121/1814488.

    [14]

    WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: bit and BHA forensics using rig-based photographic documentation practices[R]. SPE 208707, 2022.

    [15]

    PASTUSEK P. Limiter redesign processTM bit and BHA foren-sics[EB/OL]. (2021-03-28)[2022-12-01].https://www.youtube.com/watch?v=3MLBAAh21nk.

    [16]

    SELF J, STEVENSON M, ROBERTS T, et al. Fixed cutter bit & cutter technology set new performance standards for geothermal drilling[J]. GRC Transactions, 2021, 45: 826–846.

    [17]

    HELLVIK S, NYGAARD R, HOEL E, et al. PDC cutter and bit development for challenging conglomerate drilling in the Luno Field-offshore Norway[R]. SPE 151456, 2012.

    [18]

    CURRY D, PESSIER R, SPENCER R, et al. Assuring efficient PDC drilling[R]. SPE 184676, 2017.

    [19]

    RAJABOV V, MISKA S, MORTIMER L, et al. The effects of back rake and side rake angles on mechanical specific energy of single PDC cutters with selected rocks at varying depth of cuts and confining pressures[R]. SPE 151406, 2012.

    [20]

    ZHOU Yaneng, LIN J S. On the critical failure mode transition depth for rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 131–137. doi: 10.1016/j.ijrmms.2013.05.004

    [21] 张端瑞,文涛,蒲磊,等. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验:以库车山前高陡构造克深A井为例[J]. 石油钻采工艺,2020,42(6):684–690.

    ZHANG Duanrui, WEN Tao, PU Lei, et al. Pilot test on the ROP-improvement BHA of vertical drilling tool & screw rod with equal wall thickness: a case study on Well Keshen A in the high-steep structure of Kuqa piedmont area[J]. Oil Drilling & Production Technology, 2020, 42(6): 684–690.

    [22] 康健,郝围围,刘德智,等. 高陡含砾地层大扭矩螺杆+高效PDC钻头钻井提速分析[J]. 西部探矿工程,2021,33(5):71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024

    KANG Jian, HAO Weiwei, LIU Dezhi, et al. ROP optimization using high torque motor+high efficiency PDC bits in the high and steep structure gravel formation[J]. West-China Exploration Engineering, 2021, 33(5): 71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024

    [23]

    MAJIDI R, MISKA S Z, TAMMINENI S. PDC single cutter: the effects of depth of cut and RPM under simulated borehole conditions[J]. Wiertnictwo, Nafta, Gaz, 2011, 28(1/2): 283–295.

    [24]

    AKBARI B, MISKA S Z. Relative significance of multiple parameters on the mechanical specific energy and frictional responses of polycrystalline diamond compact cutters[J]. Journal of Energy Resources Technology, 2017, 139(2): 022904. doi: 10.1115/1.4034291

    [25] 张学光. 哈山3井石炭系钻井提速探索与实践[J]. 内蒙古石油化工,2013,39(20):38–40.

    ZHANG Xueguang. The exploration and practice of carboniferous ROP enhancement in Hassan 3 Well[J]. Inner Mongolia Petrochemical Industry, 2013, 39(20): 38–40.

    [26] 秦文政,邱锦,王富建,等. 克拉玛依油田一区石炭系火成岩钻井技术研究[J]. 西部探矿工程,2020,32(6):100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034

    QIN Wenzheng, QIU Jin, WANG Fujian, et al. Study on the drilling technology of carboniferous volcanic reservoir in Block 1 of Karamay Oilfield[J]. West-China Exploration Engineering, 2020, 32(6): 100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034

    [27]

    SEALE R, CONROY D. PDC bits run on turbodrills: The history, facts and current developments[R]. SPE 94826, 2005.

    [28] 成海,郑卫建,夏彬,等. 国内外涡轮钻具钻井技术及其发展趋势[J]. 石油矿场机械,2008,37(4):28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007

    CHENG Hai, ZHENG Weijian, XIA Bin, et al. The development trend of turbodrilling technology[J]. Oil Field Equipment, 2008, 37(4): 28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007

    [29] 谭春飞. 深井超深井涡轮钻具复合钻井提高钻速技术研究[D]. 北京: 中国地质大学(北京), 2012.

    TAN Chunfei. The ROP technical research on turbo-drill composite drilling in deep & ultra-deep well[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [30]

    KUYKEN C W, ELKASRAWY M E, AL BREIKI A M S, et al. High performance drilling onshore Abu Dhabi[R]. SPE 202142, 2021.

    [31]

    SHAO Fangyuan, LIU Wei, GAO Deli, et al. Development and verification of triple-ridge-shaped cutter for PDC bits[J]. SPE Journal, 2022, 27(6): 3849–3863. doi: 10.2118/210580-PA

    [32] 刘维,高德利. 大齿快切PDC钻头提速研究与现场试验[J]. 天然气工业,2022,42(9):102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010

    LIU Wei, GAO Deli. Research and field test of large-tooth and rapid-cutting PDC bit for ROP enhancement[J]. Natural Gas Industry, 2022, 42(9): 102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010

    [33]

    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599–600.

    [34]

    ZHAN G D, GOONERATNE C, MOELLENDICK T E, et al. Ultra-strong and catalyst-free polycrystalline diamond cutting materials for one-run-to-TD game-changing drilling technology[R]. IPTC 21342, 2021.

    [35]

    PASTUSEK P, SANDERSON D, MINKEVICIUS A, et al. Drilling interbedded and hard formations with PDC bits considering structural integrity limits[R]. SPE 189608, 2018.

    [36]

    WITT-DOERRING Y, PASTUSEK P P, ASHOK P, et al. Quantifying PDC bit wear in real-time and establishing an effective bit pull criterion using surface sensors[R]. SPE 205844, 2021.

    [37]

    BAILEY J R, ELSBORG C C, JAMES R W, et al. Design evolution of drilling tools to mitigate vibrations[J]. SPE Drilling & Completion, 2013, 28(4): 350–369.

    [38]

    WEI Jiusen, LIU Wei, GAO Deli. Effect of cutter shape on the resistance of PDC cutters against tip impacts[J]. SPE Journal, 2022, 27(5): 3035–3050. doi: 10.2118/209809-PA

    [39]

    HEATON D N, LYNN J B. Polycrystalline diamond elements and systems and methods for fabricating the same: US 20190085641 A1[P]. 2019-03-21.

    [40]

    KANYANTA V, DORMER A, MURPHY N, et al. Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructure[J]. International Journal of Refractory Metals and Hard Materials, 2014, 46: 145–151. doi: 10.1016/j.ijrmhm.2014.06.003

    [41]

    RAHMANI R, PASTUSEK P, YUN Geng, et al. Investigation of PDC cutter structural integrity in hard rocks[J]. SPE Drilling & Completion, 2021, 36(1): 11–28.

    [42]

    CURRY D A, LOURENÇO A M, LEDGERWOOD L W III, et al. The effect of borehole pressure on the drilling process in salt[J]. SPE Drilling & Completion, 2017, 32(1): 25–41.

    [43]

    SHAO Fangyuan, LIU Wei, GAO Deli. Study on rock-breaking mechanism of highly plastic formations[C]//Computational and Experimental Simulations in Engineering. Cham: Springer, 2023: 103 − 116.

    [44]

    ZHAN Guodong, PATIN A, PILLAI R, et al. In-situ analysis of the microscopic thermal fracture behavior of PDC cutters using environmental scanning electron microscope[R]. SPE 168004, 2014.

  • 期刊类型引用(8)

    1. 罗攀登,张士诚,郭天魁,王赫,陈铭,张雄. 缝洞型碳酸盐岩水平井压裂裂缝沟通效果模拟. 深圳大学学报(理工版). 2025(01): 30-40 . 百度学术
    2. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
    3. 陈凯,段永伟,于雪盟,刘洪霞,王翠翠,朱旭. 松南盆地情字外前缘砂页交互储层可压性评价. 油气井测试. 2024(04): 66-72 . 百度学术
    4. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 . 百度学术
    5. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 . 百度学术
    6. 钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO_2增能压裂裂缝形态研究. 石油钻探技术. 2023(05): 42-48 . 本站查看
    7. 冯新根,方俊伟,方裕燕,潘丽娟. 抗高温隔离膜缓速酸液体系研制与性能评价. 石油钻探技术. 2023(06): 99-105 . 本站查看
    8. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 . 百度学术

    其他类型引用(1)

图(18)  /  表(5)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  259
  • PDF下载量:  358
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-12-04
  • 修回日期:  2023-01-31
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回