基于大地电磁监测方法的水力裂缝响应模拟

王旭, 刘得军, 吴世伟, 李洋, 翟颖

王旭,刘得军,吴世伟,等. 基于大地电磁监测方法的水力裂缝响应模拟[J]. 石油钻探技术,2023, 51(6):115-119. DOI: 10.11911/syztjs.2023018
引用本文: 王旭,刘得军,吴世伟,等. 基于大地电磁监测方法的水力裂缝响应模拟[J]. 石油钻探技术,2023, 51(6):115-119. DOI: 10.11911/syztjs.2023018
WANG Xu, LIU Dejun, WU Shiwei, et al. Simulation of hydraulic fracture responses based on a magnetotelluric monitoring method [J]. Petroleum Drilling Techniques,2023, 51(6):115-119. DOI: 10.11911/syztjs.2023018
Citation: WANG Xu, LIU Dejun, WU Shiwei, et al. Simulation of hydraulic fracture responses based on a magnetotelluric monitoring method [J]. Petroleum Drilling Techniques,2023, 51(6):115-119. DOI: 10.11911/syztjs.2023018

基于大地电磁监测方法的水力裂缝响应模拟

基金项目: 国家自然科学基金项目“水平井水力压裂裂缝的多分量低频电磁表征机制与特征模拟研究”(编号:42074124)资助。
详细信息
    作者简介:

    王旭(1996—),男,吉林松原人,2019 年毕业于中国石油大学(北京)测控技术与仪器专业,2022年获中国石油大学(北京)信息与通信工程专业硕士学位,主要从事电磁法探测水力裂缝方面的研究。E-mail:947208366@qq.com

    通讯作者:

    刘得军,liudj65@163.com

  • 中图分类号: TE357.1+1

Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method

  • 摘要:

    常规电磁水力压裂监测方法测试范围受限于仪器源距,难以满足超深低渗储层压裂对监测纵向深度的要求。为此,在大地电磁场监测理论的基础上,结合有限元算法,基于油田生产实际,建立了直井水力压裂大地电磁地面监测正演模型,采用过渡边界条件模拟了裂缝尺寸和方位对大地电磁监测结果的影响。模拟显示,阻抗偏移能以不同方式反映裂缝参数的变化,对裂缝方位角有较好的区分度。研究结果表明,大地电磁监测方法是一种行之有效的压裂裂缝监测手段,研究结果可以为后续相关研究提供借鉴。

    Abstract:

    The test scale of conventional electromagnetic hydraulic fracture monitoring methods is limited by the source distance of the instrument, and it is difficult to meet the requirements of longitudinal depth for monitoring in ultra-deep and low-permeability reservoirs. Therefore, based on the magnetotelluric monitoring theory and finite element algorithm, the forward model of vertical well hydraulic fracturing was established according to the actual production of oilfields. By using transitional boundary conditions, the influence of fracture shape and orientation parameter changes on magnetotelluric ground observation was simulated. The simulation results show that the impedance offset can reflect the change in fracture parameters in different ways, and it has an good degree of discrimination on the azimuth angles. The research shows that the magnetotelluric monitoring method is an effective means to monitor fracturing fractures. The research results can provide a reference for the subsequent related researches.

  • 图  1   大地电磁法监测水力压裂裂缝模型示意

    Figure  1.   Model for hydraulic fracture monitoring by magnetotelluric method

    图  2   1 Hz时不同裂缝长度下的地面阻抗偏移

    Figure  2.   Ground impedance offset under different fracture lengths at 1 Hz

    图  3   1 Hz时不同裂缝宽度下的地面阻抗偏移

    Figure  3.   Ground impedance offset under different fracture widths at 1 Hz

    图  4   1 Hz时不同裂缝高度下的地面阻抗偏移

    Figure  4.   Ground impedance offset under different fracture heights at 1 Hz

    图  5   不同裂缝方位角下阻抗偏移

    Figure  5.   Impedance offset and apparent resistivity under different fracture azimuth angles

  • [1] 欧阳伟平,张冕,孙虎,等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术,2021,49(4):143–149.

    OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143–149.

    [2] 黄卓. “工厂化” 压裂多裂缝应力干扰与延伸规律研究[J]. 断块油气田,2022,29(4):572–576.

    HUANG Zhuo. Research on stress interference and propagation law of multi-fracture for “factory” fracturing[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 572–576.

    [3] 周健,曾义金,陈作,等. 青海共和盆地干热岩压裂裂缝测斜仪监测研究[J]. 石油钻探技术,2021,49(1):88–92.

    ZHOU Jian, ZENG Yijin, CHEN Zuo, et al. Research on fracture mapping with surface tiltmeters for “hot dry rock” stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88–92.

    [4]

    YANG Kai, TORRES-VERDÍN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656

    [5]

    LI Yang, LIU Dejun, ZHAI Ying, et al. 3-D FEM azimuth forward modeling of hydraulic fractures based on electromagnetic theory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 246–250. doi: 10.1109/LGRS.2020.2970441

    [6] 谢媛,刘得军,李彩芳,等. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术,2020,48(2):123–129.

    XIE Yuan, LIU Dejun, LI Caifang, et al. Forward modeling in hydraulic fracture detection by means of electromagnetic wave logging while drilling in vertical wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123–129.

    [7]

    ZHANG Liming, QI Ji, LI Lixin, et al. A forward modeling method based on electromagnetic theory to measure the parameters of hydraulic fracture[J]. Fuel, 2019, 251: 466–473. doi: 10.1016/j.fuel.2019.04.075

    [8]

    ZHAI Ying, LIU Dejun, POTTER D K, et al. Characterization of hydraulic fractures with triaxial electromagnetic induction and sector coil rotation measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2002511.

    [9] 吴世伟,刘得军,赵阳,等. 层状介质水力裂缝电磁响应的有限元正演模拟[J]. 石油钻探技术,2022,50(2):132–138.

    WU Shiwei, LIU Dejun, ZHAO Yang, et al. Finite-element forward modeling of electromagnetic response of hydraulic fractures in layered medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132–138.

    [10] 朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术,2015,43(2):63–70.

    ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.

    [11] 张连进,王俊杰,庄小菊,等. 川西北超深层复杂构造气藏裂缝建模方法及开发潜力预测[J]. 特种油气藏,2022,29(3):98–103.

    ZHANG Lianjin, WANG Junjie, ZHUANG Xiaoju, et al. Fracture modeling method and development potential prediction of ultra-deep gas reservoirs with complex structure in Northwestern Sichuan[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 98–103.

    [12] 周君君. 大地电磁法三维各向异性有限元正演及反演研究[D]. 武汉: 中国地质大学, 2022.

    ZHOU Junjun. Three-dimensional anisotropic finitie element modeling and inversion of magnetotelluric data[D]. Wuhan: China University of Geosciences, 2022.

    [13] 李袁傲,任政勇,汤井田,等. 基于空气地球分离策略的大地电磁三维正演[J]. 地球物理学报,2022,65(7):2741–2755. doi: 10.6038/cjg2022O0511

    LI Yuanao, REN Zhengyong, TANG Jingtian, et al. An air-earth decomposition formula for three-dimensional magnetotellurics forward modeling[J]. Chinese Journal of Geophysics, 2022, 65(7): 2741–2755. doi: 10.6038/cjg2022O0511

    [14] 王天意,侯征,杨进,等. 基于迭代有限元法的大地电磁二维正演[J]. 地球物理学进展,2023,38(1):328–336.

    WANG Tianyi, HOU Zheng, YANG Jin, et al. Study of the magnetotelluric 2D forward based on the iterative finite element method[J]. Progress in Geophysics, 2023, 38(1): 328–336.

    [15] 操聪,赵凌强,党昊,等. 内蒙古狼山山前断裂中段大地电磁探测研究[J]. 大地测量与地球动力学,2022,42(9):975–979.

    CAO Cong, ZHAO Lingqiang, DANG Hao, et al. Study on magnetotelluric detection of the middle section of Langshan piedmont fault in Inner Mongolia[J]. Journal of Geodesy and Geodynamics, 2022, 42(9): 975–979.

    [16] 薛毛毛,陈清礼,吴娟,等. 地球深部页岩气储层的大地电磁响应特征[J]. 科学技术与工程,2022,22(36):15896–15903. doi: 10.3969/j.issn.1671-1815.2022.36.006

    XUE Maomao, CHEN Qingli, WU Juan, et al. Magnetotelluric response characteristics of shale oil and gas in deep earth[J]. Science Technology and Engineering, 2022, 22(36): 15896–15903. doi: 10.3969/j.issn.1671-1815.2022.36.006

    [17] 陈理,秦其明,王楠,等. 大地电磁测深正演和反演研究综述[J]. 北京大学学报(自然科学版),2014,50(5):979–984.

    CHEN Li, QIN Qiming, WANG Nan, et al. Review of the forward modeling and inversion in magnetotelluric sounding field[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 979–984.

    [18] 童孝忠. 大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D]. 长沙: 中南大学, 2008.

    TONG Xiaozhong. Research of forward using finite element method and regularized inversion using hybrid genetic algorithm in magnetotelluric sounding[D]. Changsha: Central South University, 2008.

    [19]

    PRANATA E, IRAWATI S M, NIASARI S W. Magnetotelluric data analysis using Swift skew, Bahr skew, polar diagram, and phase tensor: a case study in Yellowstone, US[J]. Proceedings of the Pakistan Academy of Sciences: A Physical and Computational Sciences, 2017, 54(3): 311–317.

    [20]

    HUANG Weifeng, WANG Hanming, ZHAN Qiwei, et al. Thin dielectric sheet-based surface integral equation for the scattering simulation of fractures in a layered medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7606–7612. doi: 10.1109/TGRS.2019.2914611

    [21]

    ERIKSSON G. Efficient 3D simulation of thin conducting layers of arbitrary thickness[C]//2007 IEEE International Symposium on Electromagnetic Compatibility. Honolulu: IEEE, 2007: 1−6.

  • 期刊类型引用(11)

    1. 史配铭,李刚,刘振. SN0144i-XX小井眼测井仪器套捞一体打捞技术研究及应用. 石油工业技术监督. 2025(02): 1-6 . 百度学术
    2. 杨明,刘巨保,王田玉,丁宇奇,岳欠杯,杨宝. 井口无支撑段连续油管极限拉压载荷分析. 东北石油大学学报. 2023(01): 116-126+12 . 百度学术
    3. 邸德家,毛军,庞伟,张同义. 涪陵页岩水平井生产测井仪器遇卡处理及分析. 油气井测试. 2022(05): 54-57 . 百度学术
    4. 陆应辉,唐凯,张柟乔,任国辉,张清彬,李奔驰,李妍僖. 水平井桥塞射孔联作管串解卡力计算模型及应用. 长江大学学报(自然科学版). 2021(01): 79-86 . 百度学术
    5. 焦金龙. XS14-P2水平井落井电缆打捞技术. 油气井测试. 2021(02): 34-38 . 百度学术
    6. 张德龙,吴洪涛,贺宇迪,赵伟峰,刘佳欣. 连续油管内穿电缆测井工艺在水平井中的应用. 化学工程与装备. 2021(05): 110-111 . 百度学术
    7. 王栋,赖学明,唐庆,周俊杰. 沧东凹陷页岩油水平井不压井作业技术. 石油钻探技术. 2021(04): 150-154 . 本站查看
    8. 唐凯,陈锋,陆应辉,任国辉,李奔驰,杨登波. 水平井桥射联作电缆及其弱点的受力分析. 测井技术. 2021(04): 445-450 . 百度学术
    9. 陆应辉,唐凯,任国辉,聂华富,杨登波. 水平井泵送分簇射孔落鱼打捞工艺及应用. 长江大学学报(自然科学版). 2019(05): 23-28+6 . 百度学术
    10. 徐学利,王涛,张世虎,李希,张广利,董会,李霄,康国强,白自龙. 接触载荷对CT80连续油管摩擦磨损性能的影响. 材料保护. 2019(11): 8-12 . 百度学术
    11. 艾白布·阿不力米提,庞德新,王一全,郭新维,杨文新,焦文夫. 连续油管打捞连续油管关键工具研究与应用. 石油钻探技术. 2019(06): 89-95 . 本站查看

    其他类型引用(2)

图(5)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  81
  • PDF下载量:  55
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-05-05
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-11
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回