全缝长酸蚀填砂裂缝导流能力评价方法

蔡计光, 王川, 房好青, 苟波, 王琨, 任冀川

蔡计光,王川,房好青,等. 全缝长酸蚀填砂裂缝导流能力评价方法[J]. 石油钻探技术,2023, 51(1):78-85. DOI: 10.11911/syztjs.2023015
引用本文: 蔡计光,王川,房好青,等. 全缝长酸蚀填砂裂缝导流能力评价方法[J]. 石油钻探技术,2023, 51(1):78-85. DOI: 10.11911/syztjs.2023015
CAI Jiguang, WANG Chuan, FANG Haoqing, et al. Evaluation method for the conductivity of full-length sand-packed acid-etched fractures [J]. Petroleum Drilling Techniques,2023, 51(1):78-85. DOI: 10.11911/syztjs.2023015
Citation: CAI Jiguang, WANG Chuan, FANG Haoqing, et al. Evaluation method for the conductivity of full-length sand-packed acid-etched fractures [J]. Petroleum Drilling Techniques,2023, 51(1):78-85. DOI: 10.11911/syztjs.2023015

全缝长酸蚀填砂裂缝导流能力评价方法

基金项目: 中国石化科技攻关项目“顺北超深断溶体油藏高效酸压技术研究”(编号:P20064-3)部分研究内容
详细信息
    作者简介:

    蔡计光(1992—),男,河南周口人,2016年毕业于哈尔滨石油学院石油工程专业,2020年获中国石油大学(北京)石油与天然气工程专业硕士学位,研究实习员,主要从事储层改造方面的研究工作。E-mail:caijg23657.xbsj@sinopec.com

  • 中图分类号: TE357

Evaluation Method for the Conductivity of Full-Length Sand-Packed Acid-Etched Fractures

  • 摘要:

    为了准确评价加砂复合酸压时支撑剂对酸蚀裂缝导流能力的影响,从而确定加砂时机,提出了全缝长酸蚀填砂裂缝导流能力评价方法。以顺北油田奥陶系储层为例,采用酸压数值模拟确定了储层条件下裂缝不同位置的温度、酸液质量分数和铺砂浓度等关键试验条件,测试了酸蚀填砂裂缝不同位置的导流能力。试验结果表明:裂缝中不同位置的反应温度对酸刻蚀效果的影响大于酸液质量分数,导致裂缝中部酸刻蚀效果最好,缝尾次之,缝口较差;闭合应力大于60 MPa时,酸蚀裂缝的中部和远端填砂可显著提升导流能力。S3井采用该方法确定酸压中期加砂提升裂缝中、远端的导流能力,改造后稳定日产油量较邻井提高了40.0%,稳产时间延长了57.8%。全缝长酸蚀填砂裂缝导流能力评价方法,克服了常规试验方法难以评价储层条件下百米级裂缝导流能力的局限,为复合酸压加砂时机的确定提供了新的手段。

    Abstract:

    In order to evaluate the influence of proppant on the conductivity of acid-etched fractures during the composite acid fracturing with sand and determine the timing of adding sand, an evaluation method for the conductivity of sand-packed acid-etched fractures at full-length scale was proposed. The Ordovician reservoir in Shunbei Oilfield was taken as an example. Firstly, acid fracturing numerical simulation was used to determine the key test conditions such as temperature, mass fraction of acid solution, and sand concentration at different positions of fractures under reservoir conditions, and then the conductivity of sand-packed acid-etched fractures at different positions was tested. The results showed that the impact of reaction temperature at different positions of the fractures on the acid-etching effect was greater than that of the mass fraction of acid solution, which led to the best acid-etching effect in the middle of the fractures, followed by the fracture tail, and the fracture inlet was the worst. When the closure stress was greater than 60 MPa, sand filling in the middle and tail of the acid-etched fractures could significantly improve the conductivity. This method was applied in Well S3 to determine the sand addition during the metaphase of acid fracturing, so as to improve the conductivity in the middle and tail of the fractures. After the stimulation, the stable daily oil production was increased by 40% compared with the adjacent wells, and the stable production time was extended by 57.8%. The evaluation method for the conductivity of full-length sand-packed acid-etched fractures overcomes the difficulty to evaluate the conductivity of fractures with the order of 100 meters under reservoir conditions which is a limitation for conventional tests and provides a new method for determining the timing of adding sand in composite acid-fracturing.

  • 图  1   酸压过程中裂缝不同位置处的温度变化曲线

    Figure  1.   Temperature variation at different positions of fractures during acid fracturing

    图  2   酸压过程中裂缝不同位置酸液质量分数变化曲线

    Figure  2.   Mass fraction variation of acid solution at different positions of fractures during acid fracturing

    图  3   酸刻蚀岩板实物形貌与岩面数值形貌图像

    Figure  3.   Physical topography images of acid-etched rock plate and numerical topography images of rock surface

    图  4   酸刻蚀裂缝与酸蚀填砂裂缝缝口导流能力对比

    Figure  4.   Comparison between the conductivity of acid-etched fractures and sand-packed acid-etched fractures at the inlet

    图  5   酸刻蚀裂缝与酸蚀填砂裂缝缝中导流能力对比

    Figure  5.   Comparison between the conductivity of acid-etched fractures and sand-packed acid-etched fractures inside the fracture

    图  6   酸刻蚀裂缝与酸蚀填砂裂缝缝尾导流能力对比

    Figure  6.   Comparison between the conductivity of acid-etched fractures and sand-packed acid-etched fractures at fracture tail

    图  7   酸刻蚀裂缝与酸蚀填砂裂缝全缝长导流能力对比

    Figure  7.   Comparison of conductivity of full-length between acid-etched fractures and sand-packed acid-etched fractures

    图  8   S3井酸压施工曲线

    Figure  8.   Acid fracturing treatment curve of Well S3

    表  1   试验方案设计

    Table  1   Experimental scheme design

    岩板编号裂缝位置工艺注入排量/(mL·min−1刻蚀时间/min酸质量分数,%温度/℃铺砂浓度/(kg·m−2闭合应力/MPa
    1缝口加砂复合酸压30050205040~80
    2酸压0
    3缝中加砂复合酸压3005016804
    4酸压0
    5缝尾加砂复合酸压3005081504
    6酸压0
    下载: 导出CSV

    表  2   酸刻蚀岩板溶蚀量

    Table  2   Dissolution weight of acid-etched rock plate

    岩板编号模拟裂缝位置岩板溶蚀量/g平均溶蚀量/g
    1缝口20.2720.09
    219.91
    3缝中42.5940.30
    438.00
    5缝尾41.2438.54
    635.84
    下载: 导出CSV
  • [1] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17. doi: 10.11698/PED.2022.01.01

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17. doi: 10.11698/PED.2022.01.01

    [2] 吕海涛,韩俊,张继标,等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质,2021,43(1):14–22. doi: 10.11781/sysydz202101014

    LYU Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei Area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14–22. doi: 10.11781/sysydz202101014

    [3] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058

    [4] 李新勇,李骁,赵兵,等. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术,2022,50(2):92–98. doi: 10.11911/syztjs.2021068

    LI Xinyong, LI Xiao, ZHAO Bing, et al. Key technologies for large-scale acid fracturing of ultra-deep fault-karst carbonate reservoirs with ultra-high temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92–98. doi: 10.11911/syztjs.2021068

    [5] 赵兵,李春月,房好青,等. 顺北断溶体油藏重复酸压时机优化研究[J]. 非常规油气,2021,8(5):100–105. doi: 10.19901/j.fcgyq.2021.05.14

    ZHAO Bing, LI Chunyue, FANG Haoqing, et al. Optimization of repeated acid fracturing timing in Shunbei fault solution reser-voir[J]. Unconventional Oil & Gas, 2021, 8(5): 100–105. doi: 10.19901/j.fcgyq.2021.05.14

    [6] 曲占庆,林强,郭天魁,等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田,2019,26(4):533–536.

    QU Zhanqing, LIN Qiang, GUO Tiankui, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 533–536.

    [7] 周佳佳,邹洪岚,朱大伟,等. 低弹性模量碳酸盐岩储层裂缝导流能力实验研究[J]. 石油钻采工艺,2020,42(6):752–756. doi: 10.13639/j.odpt.2020.06.014

    ZHOU Jiajia, ZOU Honglan, ZHU Dawei, et al. Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus[J]. Oil Drilling & Production Technology, 2020, 42(6): 752–756. doi: 10.13639/j.odpt.2020.06.014

    [8] 吴月先,马发明,赵业荣,等. 酸化与加砂压裂协同作业技术及其优势[J]. 石油钻探技术,2009,37(1):69–72. doi: 10.3969/j.issn.1001-0890.2009.01.016

    WU Yuexian, MA Faming, ZHAO Yerong, et al. Acidizing and sand fracturing technique and its advantages[J]. Petroleum Drilling Techniques, 2009, 37(1): 69–72. doi: 10.3969/j.issn.1001-0890.2009.01.016

    [9] 杨菁,刘辉,宁超众. 低渗孔隙型碳酸盐岩油藏储层改造适应性及优化设计[J]. 石油科学通报,2022,7(2):204–212. doi: 10.3969/j.issn.2096-1693.2022.02.018

    YANG Jing, LIU Hui, NING Chaozhong. Adaptability and optimal design of stimulation measures of low permeability carbonate reservoirs[J]. Petroleum Science Bulletin, 2022, 7(2): 204–212. doi: 10.3969/j.issn.2096-1693.2022.02.018

    [10] 朱利勇. 碳酸盐岩水力加砂压裂与酸压复合改造技术可行性论证[D]. 成都: 西南石油大学, 2018.

    ZHU Liyong. Feasibility demonstration of hydraulic fracturing and acid fracturing composite stimulation technique in carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2018.

    [11] 余芳,徐克彬,郑立军,等. 杨税务深潜山AT3井复合酸压改造工艺技术[J]. 钻井液与完井液,2018,35(6):114–121. doi: 10.3969/j.issn.1001-5620.2018.06.021

    YU Fang, XU Kebin, ZHENG Lijun, et al. Compounding acid-fracturing techniques for well AT3 in Yangshuiwu deep buried hill structure[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 114–121. doi: 10.3969/j.issn.1001-5620.2018.06.021

    [12] 耿宇迪,周林波,王洋,等. 超深碳酸盐岩复合高导流酸压技术[J]. 油气藏评价与开发,2019,9(6):56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    GENG Yudi, ZHOU Linbo, WANG Yang, et al. High conductivity acid fracturing technology in ultra-deep carbonate reservoir[J]. Reservoir Evaluation and Development, 2019, 9(6): 56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    [13] 姜浒,陈勉,张广清,等. 碳酸盐岩储层加砂酸压支撑裂缝短期导流能力试验[J]. 中国石油大学学报(自然科学版),2009,33(4):89–92.

    JIANG Hu, CHEN Mian, ZHANG Guangqing, et al. Experiment on short-term conductivity of sand-adding acid-fracturing propping fractures in carbonate reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(4): 89–92.

    [14]

    ZHANG Lufeng, ZHOU Fujian, MOU Jianye, et al. A new method to improve long-term fracture conductivity in acid fracturing under high closure stress[J]. Journal of Petroleum Science and Engineering, 2018, 171: 760–770. doi: 10.1016/j.petrol.2018.07.073

    [15] 周珺,周林波,蒋廷学,等. 超深碳酸盐岩储层通道加砂酸压导流能力实验[J]. 成都理工大学学报(自然科学版),2019,46(2):221–226.

    ZHOU Jun, ZHOU Linbo, JIANG Tingxue, et al. Experimental study on the fracture conductivity of ultra-deep carbonate reservoirs by channel sanding acid fracturing[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2019, 46(2): 221–226.

    [16]

    GUO Jianchun, LIU Zhuang, GOU Bo, et al. Study of wellbore heat transfer considering fluid rheological effects in deep well aci-dizing[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107171. doi: 10.1016/j.petrol.2020.107171

    [17] 王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京: 石油工业出版社, 1998.

    WANG Hongxun, ZHANG Shicheng. Numerical calculation method for hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998.

    [18] 庞铭,陈华兴,唐洪明,等. 基于裂缝重构评价酸蚀对碳酸盐岩应力敏感性的影响[J]. 特种油气藏,2022,29(1):107–113. doi: 10.3969/j.issn.1006-6535.2022.01.016

    PANG Ming, CHEN Huaxing, TANG Hongming, et al. Evaluation of the effect of acid erosion on stress sensitivity of carbonate rocks based on fracture reconstruction[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 107–113. doi: 10.3969/j.issn.1006-6535.2022.01.016

    [19] 张雄,李春月,周舟,等. 精细化壁面重构下的酸蚀裂缝导流能力研究[J]. 石油科学通报,2022,7(2):213–221. doi: 10.3969/j.issn.2096-1693.2022.02.019

    ZHANG Xiong, LI Chunyue, ZHOU Zhou, et al. Study on the conductivity of acid etched fracture under the precise reconstruction of fracture surface[J]. Petroleum Science Bulletin, 2022, 7(2): 213–221. doi: 10.3969/j.issn.2096-1693.2022.02.019

    [20] 王燚钊,侯冰,张鲲鹏,等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报,2020,5(3):412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    WANG Yizhao, HOU Bing, ZHANG Kunpeng, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    [21] 苟波,李骁,马辉运,等. 水力裂缝形貌对酸刻蚀行为及导流能力影响[J]. 西南石油大学学报(自然科学版),2019,41(3):80–90.

    GOU Bo, LI Xiao, MA Huiyun, et al. Effects of morphology of hydraulic fractures on acid etching behaviors and fluid diversion capacity[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(3): 80–90.

  • 期刊类型引用(11)

    1. 史配铭,李刚,刘振. SN0144i-XX小井眼测井仪器套捞一体打捞技术研究及应用. 石油工业技术监督. 2025(02): 1-6 . 百度学术
    2. 杨明,刘巨保,王田玉,丁宇奇,岳欠杯,杨宝. 井口无支撑段连续油管极限拉压载荷分析. 东北石油大学学报. 2023(01): 116-126+12 . 百度学术
    3. 邸德家,毛军,庞伟,张同义. 涪陵页岩水平井生产测井仪器遇卡处理及分析. 油气井测试. 2022(05): 54-57 . 百度学术
    4. 陆应辉,唐凯,张柟乔,任国辉,张清彬,李奔驰,李妍僖. 水平井桥塞射孔联作管串解卡力计算模型及应用. 长江大学学报(自然科学版). 2021(01): 79-86 . 百度学术
    5. 焦金龙. XS14-P2水平井落井电缆打捞技术. 油气井测试. 2021(02): 34-38 . 百度学术
    6. 张德龙,吴洪涛,贺宇迪,赵伟峰,刘佳欣. 连续油管内穿电缆测井工艺在水平井中的应用. 化学工程与装备. 2021(05): 110-111 . 百度学术
    7. 王栋,赖学明,唐庆,周俊杰. 沧东凹陷页岩油水平井不压井作业技术. 石油钻探技术. 2021(04): 150-154 . 本站查看
    8. 唐凯,陈锋,陆应辉,任国辉,李奔驰,杨登波. 水平井桥射联作电缆及其弱点的受力分析. 测井技术. 2021(04): 445-450 . 百度学术
    9. 陆应辉,唐凯,任国辉,聂华富,杨登波. 水平井泵送分簇射孔落鱼打捞工艺及应用. 长江大学学报(自然科学版). 2019(05): 23-28+6 . 百度学术
    10. 徐学利,王涛,张世虎,李希,张广利,董会,李霄,康国强,白自龙. 接触载荷对CT80连续油管摩擦磨损性能的影响. 材料保护. 2019(11): 8-12 . 百度学术
    11. 艾白布·阿不力米提,庞德新,王一全,郭新维,杨文新,焦文夫. 连续油管打捞连续油管关键工具研究与应用. 石油钻探技术. 2019(06): 89-95 . 本站查看

    其他类型引用(2)

图(8)  /  表(2)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  88
  • PDF下载量:  42
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-12-02
  • 网络出版日期:  2022-12-25
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回