留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声波远探测的浅海软地层邻井井眼成像方法

牛德成 苏远大

牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022, 50(6):21-27 doi: 10.11911/syztjs.2022111
引用本文: 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022, 50(6):21-27 doi: 10.11911/syztjs.2022111
NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations [J]. Petroleum Drilling Techniques,2022, 50(6):21-27 doi: 10.11911/syztjs.2022111
Citation: NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations [J]. Petroleum Drilling Techniques,2022, 50(6):21-27 doi: 10.11911/syztjs.2022111

基于声波远探测的浅海软地层邻井井眼成像方法

doi: 10.11911/syztjs.2022111
基金项目: 国家自然科学基金项目“海相深层油气富集机理与关键工程技术基础研究”(编号:U19B6003)资助
详细信息
    作者简介:

    牛德成(1979—),男,山东泗水人,2002年毕业于石油大学(华东)计算机及应用专业,高级工程师,主要从事测井技术研究及管理工作。E-mail: niudch@cnooc.com.cn

  • 中图分类号: P631.54

Adjacent Borehole Imaging Method Based on Acoustic Remote Detection in Shallow Unconsolidated Formations

  • 摘要:

    为满足超软地层钻井防碰与井眼轨迹描述的需要,基于声波远探测测井技术,提出了一种偶极纵波邻井井眼成像方法。首先,基于有限差分法模拟了井中偶极声源激发的邻井散射全波场,分析了不同类型散射波的幅度特征及方位特性;然后,分析了两井不共面对散射波幅度和到达时间的影响;最后,通过双井模型试验和现场实际测井数据,验证了偶极纵波邻井成像的可靠性。研究结果表明:偶极纵波相对于横波在超软地层邻井成像中更具优势;四分量旋转后成像最清晰的方位即为目标井方位;两井不共面也不会影响邻井成像。偶极纵波邻井井眼成像方法为浅海软地层钻井防碰和井眼轨迹描述提供了新的技术手段。

     

  • 图 1  邻井探测物理模型示意

    Figure 1.  Physical model of adjacent well detection

    图 2  声源偏振方位角为0°时,xOz 平面内不同时刻x方向分量的波场快照

    Figure 2.  Wavefield snapshots of x-direction component in xOz plane with time at a polarized azimuth of acoustic source of 0°

    图 3  声源偏振方位角为90°时,xOz 平面内不同时刻y方向的波场快照

    Figure 3.  Wavefield snapshots of y-direction component in xOz plane with time at a polarized azimuth of acoustic source of 90°

    图 4  偶极声源偏振方位角分别为0°和90°时井内接收到的同向分量波形

    Figure 4.  Waveforms of co-directional components obtained from wells at a polarized azimuth of dipole acoustic sources of 0° and 90°

    图 5  不同类型散射波幅度绝对值的最大幅度随源距的变化曲线

    Figure 5.  Variation curve of maximum amplitude of absolute value of different scattered wave amplitudes with source distance

    图 6  散射PP波幅度随偶极声源偏振方位角的变化

    Figure 6.  Variation of scattered PP wave amplitude with polarized azimuth of dipole acoustic sources

    图 7  目标井2种旋转方式示意

    Figure 7.  Two rotation modes of the target well

    图 8  目标井与测量井井轴存在夹角时的散射PP波波形

    Figure 8.  Waveforms of scattered PP wave under an angle between axes of target well and measuring well

    图 9  邻井试验模型

    Figure 9.  Test model of adjacent well

    图 10  试验井远探测处理结果

    Figure 10.  Remote detection processing results of test well

    图 11  海上油田某井邻井偶极纵波成像结果

    Figure 11.  Dipole P-wave imaging results of adjacent well of a well in offshore oilfield

    表  1  测量井模型尺寸及弹性参数

    Table  1.   Model size and elastic parameters of the measuring well

    模型组成 纵波速度/
    (m·s−1
    横波速度/
    (m·s−1
    密度/
    (kg·m−3
    半径/
    m
    井中流体1 500 1 0000.160
    套管6 0983 3547 5000.169
    水泥环2 8231 7291 9200.203
    地层1 7244502 000
    下载: 导出CSV
  • [1] 唐晓明,魏周拓,苏远大,等. 偶极横波远探测测井技术进展及其应用[J]. 测井技术,2013,37(4):333–340. doi: 10.3969/j.issn.1004-1338.2013.04.001

    TANG Xiaoming, WEI Zhoutuo, SU Yuanda, et al. A review on the progress and application of dipole acoustic reflection imaging technology[J]. Well Logging Technology, 2013, 37(4): 333–340. doi: 10.3969/j.issn.1004-1338.2013.04.001
    [2] 李翠,高丽萍,李佳,等. 邻井随钻电磁测距防碰工具模拟试验研究[J]. 石油钻探技术,2017,45(6):110–115. doi: 10.11911/syztjs.201706020

    LI Cui, GAO Liping, LI Jia, et al. Experiment research on an electromagnetic anti-collision detection tool while drilling adjacent wells[J]. Petroleum Drilling Techniques, 2017, 45(6): 110–115. doi: 10.11911/syztjs.201706020
    [3] HORNBY B E. Imaging of near-borehole structure using full-waveform sonic data[J]. Geophysics, 1989, 54(6): 747–757. doi: 10.1190/1.1442702
    [4] 乔文孝,车小花,李刚,等. 反射声波成像测井的物理模拟[J]. 石油物探,2004,43(3):294–297. doi: 10.3969/j.issn.1000-1441.2004.03.019

    QIAO Wenxiao, CHE Xiaohua, LI Gang, et al. The physical modeling of acoustic reflection image logging[J]. Geophysical Prospecting for Petroleum, 2004, 43(3): 294–297. doi: 10.3969/j.issn.1000-1441.2004.03.019
    [5] 陶果,何峰江,王兵,等. 声反射成像测井在地层中的三维波场模拟方法研究[J]. 中国科学D辑,2008,38(增刊1):166–173.

    TAO Guo, HE Fengjiang, WANG Bing, et al. Research on 3D wave field simulation method of acoustic reflection imaging logging in formation[J]. Science in China(Series D), 2008, 38(supplement1): 166–173.
    [6] 柴细元,张文瑞,王贵清,等. 远探测声波反射波成像测井技术在裂缝性储层评价中的应用[J]. 测井技术,2009,33(6):539–543. doi: 10.3969/j.issn.1004-1338.2009.06.009

    CHAI Xiyuan, ZHANG Wenrui, WANG Guiqing, et al. Application of remote exploration acoustic reflection imaging logging technique in fractured reservoir[J]. Well Logging Technology, 2009, 33(6): 539–543. doi: 10.3969/j.issn.1004-1338.2009.06.009
    [7] TANG Xiaoming. Imaging near-borehole structure using directional acoustic-wave measurement[J]. Geophysics, 2004, 69(6): 1378–1386. doi: 10.1190/1.1836812
    [8] TANG Xiaoming, PATTERSON D J. Single-well S-wave imaging using multicomponent dipole acoustic-log data[J]. Geophysics, 2009, 74(6): WCA211–WCA223. doi: 10.1190/1.3227150
    [9] WEI Zhoutuo, TANG Xiaoming. Numerical simulation of radiation, reflection, and reception of elastic waves from a borehole dipole source[J]. Geophysics, 2012, 77(6): D253–D261. doi: 10.1190/geo2012-0061.1
    [10] 唐晓明,魏周拓. 利用井中偶极声源远场辐射特性的远探测测井[J]. 地球物理学报,2012,55(8):2798–2807. doi: 10.6038/j.issn.0001-5733.2012.08.031

    TANG Xiaoming, WEI Zhoutuo. Single-well acoustic reflection imaging using far-field radiation characteristics of a borehole dipole source[J]. Chinese Journal of Geophysics, 2012, 55(8): 2798–2807. doi: 10.6038/j.issn.0001-5733.2012.08.031
    [11] TANG Xiaoming, CAO Jingji, WEI Zhoutuo. Shear-wave radiation, reception, and reciprocity of a borehole dipole source: with application to modeling of shear-wave reflection survey[J]. Geophysics, 2014, 79(2): T43–T50. doi: 10.1190/geo2013-0096.1
    [12] 郝仲田,孙小芳,刘西恩,等. 偶极横波远探测测井技术应用研究[J]. 地球物理学进展,2014,29(5):2172–2177. doi: 10.6038/pg20140527

    HAO Zhongtian, SUN Xiaofang, LIU Xien, et al. The application research of dipole acoustic reflection imaging technology[J]. Progress in Geophysics, 2014, 29(5): 2172–2177. doi: 10.6038/pg20140527
    [13] 苏远大,魏周拓,唐晓明. 基于邻井反射的偶极横波远探测验证方法[J]. 应用声学,2014,33(1):29–34.

    SU Yuanda, WEI Zhoutuo, TANG Xiaoming. A validation method of dipole shear-wave remote reflection imaging from adjacent borehole reflection[J]. Journal of Applied Acoustics, 2014, 33(1): 29–34.
    [14] TANG Xiaoming, CAO Jingji, LI Zhen, et al. Detecting a fluid-filled borehole using elastic waves from a remote borehole[J]. Journal of the Acoustical Society of America, 2016, 140(2): EL211–EL217. doi: 10.1121/1.4960143
    [15] GU Xihao, TANG Xiaoming, SU Yuanda. Delineating a cased borehole in unconsolidated formations using dipole acoustic data from a nearby well[J]. Geophysics, 2021, 86(5): D139–D147. doi: 10.1190/geo2020-0570.1
    [16] 唐晓明,古希浩,李杨虎,等. 井孔与弹性波的相互作用:理论、方法和应用[J]. 地球物理学报,2021,64(12):4227–4238. doi: 10.6038/cjg2021O0396

    TANG Xiaoming, GU Xihao, LI Yanghu, et al. The interaction between borehole and elastic waves: theory, method and application[J]. Chinese Journal of Geophysics, 2021, 64(12): 4227–4238. doi: 10.6038/cjg2021O0396
    [17] LEE S Q, CHEN Ming, GU Xihao, et al. Application of four-component dipole shear reflection imaging to interpret the geological structure around a deviated well[J]. Applied Geophysics, 2019, 16(3): 291–301. doi: 10.1007/s11770-019-0778-x
    [18] LI Zhen, SU Yuanda, TANG Xiaoming, et al. A hybrid method to simulate elastic wave scattering of three-dimensional objects[J]. The Journal of the Acoustical Society of America, 2018, 144(4): EL268–EL274. doi: 10.1121/1.5059332
    [19] LI Zhen, QI Qiaomu, HEI Chuang, et al. Elastic-wave radiation, scattering, and reception of a dipole acoustic logging-while-drilling source in unconsolidated formations[J]. Frontiers in Earth Science, 2022, 10: 879345. doi: 10.3389/feart.2022.879345
    [20] TANG Xiaoming, LI Zhen, HEI Chuang, et al. Elastic wave scattering to characterize heterogeneities in the borehole environment[J]. Geophysical Journal International, 2016, 205(1): 594–603. doi: 10.1093/gji/ggw037
    [21] PENG Chengbin. Borehole effects on downhole seismic measurements[D]. Cambridge: Massachusetts Institute of Technology, 1994.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2022-10-09
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回