多尺度随钻方位电磁波测井系统响应特征研究

吴柏志, 杨震, 郭同政, 袁习勇

吴柏志,杨震,郭同政,等. 多尺度随钻方位电磁波测井系统响应特征研究[J]. 石油钻探技术,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107
引用本文: 吴柏志,杨震,郭同政,等. 多尺度随钻方位电磁波测井系统响应特征研究[J]. 石油钻探技术,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107
WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging While drilling system with multi-scale azimuthaWl electromagnetic waves [J]. Petroleum Drilling Techniques,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107
Citation: WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging While drilling system with multi-scale azimuthaWl electromagnetic waves [J]. Petroleum Drilling Techniques,2022, 50(6):7-13. DOI: 10.11911/syztjs.2022107

多尺度随钻方位电磁波测井系统响应特征研究

基金项目: 中国石化集团公司科研攻关项目“随钻超深方位电磁波前探测仪器关键技术研究”(编号:JP22503)、中国石化“十条龙”科技攻关项目“旋转地质导向核心技术攻关及应用”(编号:P21080)和中国博士后科学基金项目“随钻瞬变电磁测井前视远探测方法研究”(编号:2022M713462)联合资助
详细信息
    作者简介:

    吴柏志(1970—),男,吉林扶余人,1993年毕业于大庆石油学院采油工程专业,2006年获中国石油大学(华东)油气田开发工程专业博士学位,正高级工程师,主要从事石油工程技术方面的管理和研究工作。E-mail:wubz@sinopec.com

  • 中图分类号: P631.8+11

Response Characteristics of Logging While Drilling System with Multi-Scale Azimuthal Electromagnetic Waves

  • 摘要:

    为了及时发现地层构造变化,规避钻井风险的同时准确评价地层,要求随钻测井仪器具备尽可能大的探测深度和较高的分辨率,而单一尺度的测量结果难以同时满足上述要求。为此,模拟研究了超深随钻方位电磁波和随钻方位电磁波测井系统的探测特性,分析了该测井系统的探边能力和分辨率,并探索了其对钻前地层界面的探测效果;然后,采用拟牛顿法,进行了多尺度随钻方位电磁波测井资料的精确快速反演。研究结果表明,通过增大源距、降低频率的方式,超深随钻方位电磁波测井的探边能力达到数十米;与小尺度随钻方位电磁波测井联合使用,通过反演可以实时获取油藏电阻率剖面信息,从而实现近远井不同范围内的地质预测、地质导向和油藏描述。

    Abstract:

    In order to detect changes in stratigraphic structures in time, and accurately evaluate formation while avoiding drilling risks, logging while drilling (LWD) instruments are required with adequate depth of detection (DOD) and higher resolution. However, the measurement results of a single scale LWD cannot simultaneously satisfy the stated requirements. Therefore, the detection characteristics of ultra-deep azimuthal electromagnetic wave LWD and a conventional one were simulated and investigated, and the boundary detection ability and resolution of the system were analyzed as well. Meanwhile, the detection effect of undrilled formation interface was also explored. Moreover, the quasi-Newton method was used to perform accurate and fast inversion of data from LWD with multi-scale azimuthal electromagnetic waves. The study results showed that by increasing the coil spacing and reducing the frequency, the LWD with ultra-deep azimuthal electromagnetic waves could have a boundary detection ability of tens of meters. Combined with a small-scale azimuthal electromagnetic wave LWD, the real-time resistivity profile of reservoirs through inversion could be obtained, so as to bring about geological prediction, geosteering, and reservoir characterization in the vicinity of wellbore and farther away.

  • 图  1   多尺度随钻方位电磁波测井系统的天线排布

    Figure  1.   Antenna configuration of LWD system with multi-scale azimuthal electromagnetic waves

    图  2   层状地层多尺度测井系统响应模拟结果

    Figure  2.   Simulated response results of multi-scale logging system in laminated formation

    图  3   层状地层边界探测信号成像

    Figure  3.   Images of boundary detection signals in laminated formation

    图  4   探边能力与电阻率对比度的关系

    Figure  4.   Relationship between boundary detection ability and resistivity contrast

    图  5   直井、不同层厚条件下的电阻率响应模拟结果

    Figure  5.   Simulated response results of resistivity with different layer thicknesses in vertical well

    图  6   层状地层超深地质信号响应模拟结果

    Figure  6.   Simulated response results of ultra-deep geosignals in laminated formation

    图  7   层状地层方位电阻率成像

    Figure  7.   Image of azimuthal resistivity in laminated formation

    图  8   测井仪器与地层的相对位置关系

    Figure  8.   Relative position of instrument and formation

    图  9   前探测视电阻率响应模拟结果

    Figure  9.   Simulated response results of apparent resistivity of undrilled formation

    图  10   多尺度测井系统反演结果

    Figure  10.   Inversion results of multi-scale logging system

  • [1]

    SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.

    [2]

    YUAN Xiyong, DENG Shaogui, LI Zhiqiang, et al. Deep-detection of formation boundary using transient multicomponent electromagnetic logging measurements[J]. Petroleum Science, 2022, 19(3): 1085–1098. doi: 10.1016/j.petsci.2021.12.016

    [3]

    WU Zhenguan, FAN Yiren, WANG Jiawei, et al. Application of 2.5-D finite difference method in logging-while-drilling electromagnetic measurements for complex scenarios[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 577–581. doi: 10.1109/LGRS.2019.2926740

    [4]

    OMERAGIC D, LI Q, CHOU L, et al. Deep directional electromagnetic measurements for optimal well placement[R]. SPE 97045, 2005.

    [5]

    BITTAR M, KLEIN J, BESTE R, et al. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[J]. SPE Reservoir Evaluation & Engineering, 2009, 12(2): 270–279.

    [6]

    LI Shanjun, CHEN Jiefu, BINFORD T L, Jr, et al. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.

    [7] 杨震,杨锦舟,韩来聚,等. 随钻方位电磁波界面探测性能分析[J]. 石油学报,2016,37(7):930–938. doi: 10.1038/aps.2016.55

    YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7): 930–938. doi: 10.1038/aps.2016.55

    [8] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版),2013,43(6):2035–2043. doi: 10.13278/j.cnki.jjuese.2013.06.023

    YANG Zhen, YANG Jinzhou, HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035–2043. doi: 10.13278/j.cnki.jjuese.2013.06.023

    [9] 刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767–1775.

    LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775.

    [10] 岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920.

    YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920.

    [11]

    WU H H, GOLLA C, PARKER T, et al. A new ultra-deep azimuthal electromagnetic LWD sensor for reservoir insight[R]. SPWLA-2018-X, 2018.

    [12]

    HARTMANN A, VIANNA A, MAURER H M, et al. Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA-2014-MM, 2014.

    [13] 张盼,邓少贵,胡旭飞,等. 超深随钻方位电磁波测井探测特性及参数敏感性分析[J]. 地球物理学报,2021,64(6):2210–2219.

    ZHANG Pan, DENG Shaogui, HU Xufei, et al. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement[J]. Chinese Journal of Geophysics, 2021, 64(6): 2210–2219.

    [14] 肖加奇,张国艳,洪德成,等. 层状各向异性地层中三维感应测井响应快速计算及资料处理[J]. 地球物理学报,2013,56(2):696–706.

    XIAO Jiaqi, ZHANG Guoyan, HONG Decheng, et al. Fast forward modeling and data processing of 3D induction logging tool in layered anisotropic formation[J]. Chinese Journal of Geophysics, 2013, 56(2): 696–706.

    [15] 魏宝君,田坤,张旭,等. 定向电磁波传播随钻测量基本理论及其在地层界面预测中的应用[J]. 地球物理学报,2010,53(10):2507–2515.

    WEI Baojun, TIAN Kun, ZHANG Xu, et al. Physics of directional electromagnetic propagation measurements-while-drilling and its application for forecasting formation boundaries[J]. Chinese Journal of Geophysics, 2010, 53(10): 2507–2515.

    [16] 黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132

    [17]

    SEYDOUX J, DENICHOU J M, AMIR I, et al. Real-time EM look-ahead: A maturing technology to decrease drilling risk in low inclination wells[R]. SPWLA-2019-GGGG, 2019.

    [18] 胡旭飞,范宜仁,吴非,等. 随钻方位电磁波测井多参数快速反演[J]. 地球物理学报,2018,61(11):4690–4701. doi: 10.6038/cjg2018L0746

    HU Xufei, FAN Yiren, WU Fei, et al. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement[J]. Chinese Journal of Geophysics, 2018, 61(11): 4690–4701. doi: 10.6038/cjg2018L0746

    [19] 王磊,刘英明,王才志,等. 水平井随钻电磁波测井实时正反演方法[J]. 石油勘探与开发,2021,48(1):139–147. doi: 10.11698/PED.2021.01.12

    WANG Lei, LIU Yingming, WANG Caizhi, et al. Real-time forward modeling and inversion of logging-while-drilling electromagnetic measurements in horizontal wells[J]. Petroleum Exploration and Development, 2021, 48(1): 139–147. doi: 10.11698/PED.2021.01.12

  • 期刊类型引用(1)

    1. 刘献博,薛亮,刘敏,王智明,张峥,邵天宇. 连续波钻井液脉冲发生器压力波波形优化研究. 石油机械. 2020(12): 44-51 . 百度学术

    其他类型引用(5)

图(10)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  161
  • PDF下载量:  130
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-07-28
  • 修回日期:  2022-10-08
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-12-07

目录

    /

    返回文章
    返回