留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油气井钻完井作业碳减排发展方向与建议

王敏生

王敏生. 油气井钻完井作业碳减排发展方向与建议[J]. 石油钻探技术,2022, 50(6):1-6 doi: 10.11911/syztjs.2022106
引用本文: 王敏生. 油气井钻完井作业碳减排发展方向与建议[J]. 石油钻探技术,2022, 50(6):1-6 doi: 10.11911/syztjs.2022106
WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion [J]. Petroleum Drilling Techniques,2022, 50(6):1-6 doi: 10.11911/syztjs.2022106
Citation: WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion [J]. Petroleum Drilling Techniques,2022, 50(6):1-6 doi: 10.11911/syztjs.2022106

油气井钻完井作业碳减排发展方向与建议

doi: 10.11911/syztjs.2022106
基金项目: 中国石化科技攻关项目“面向2035年的油气开发工程前沿技术战略研究”(编号:P20031)资助
详细信息
    作者简介:

    王敏生(1973—),男,河南信阳人,1995年毕业于江汉石油学院钻井工程专业,2009年获中国石油大学(华东)油气井工程专业博士学位,正高级工程师,主要从事油气井工程及石油工程战略规划方面的研究与管理工作。系本刊主编。E-mail:wangms.sripe@sinopec.com

  • 中图分类号: X24

Development Direction and Suggestions for Carbon EmissionReduction during Drilling and Completion

  • 摘要:

    钻完井作为油气勘探开发中主要的碳排放阶段,是实现净零排放的重要环节。总结了油气全产业链碳排放足迹及主要油田技术服务公司碳减排的动向,分析了钻完井作业碳减排的发展方向,认为其主要包括升级改造钻机与压裂泵车动力系统、提升装备动力管理自动化水平、加大储能技术在钻完井中的应用力度、推广钻完井自动化与远程决策系统、探索钻完井作业与海洋新能源耦合等,结合国家和油气企业碳达峰、碳中和目标以及钻完井技术水平,提出了实现钻完井作业过程碳减排的建议,即聚焦油气勘探开发碳排放足迹,强化钻完井全过程碳排放管理、推进钻完井全过程低碳化转型、提升钻完井作业效率、探索海洋新能源利用。研究结果与建议对加快推进钻完井作业过程碳减排、实现我国低碳转型承诺具有重要意义。

     

  • 图 1  油气全产业链生产阶段碳排放来源

    Figure 1.  Sources of carbon emissions in the whole oil & gas industry chain

    图 2  双柴油发电机组+锂电池混合动力钻机

    Figure 2.  Hybrid drilling rig with dual-diesel generating set and lithium battery

    图 3  海洋钻完井与新能源耦合

    Figure 3.  Coupling scenario of offshore drilling and completion with new energy

    表  1  部分油田技术服务公司碳减排目标与技术布局

    Table  1.   Carbon emission reduction goals and technological layout of some oil service companies

    公司碳减排目标技术布局
    技术服务公司斯伦贝谢 2025年前 Scope1和 Scope2减少 30%,2030
    年前Scope1和Scope2减少50%,Scope3减少
    30%,2050年实现净零排放
    钻机自动化动力管理系统、 远程作业; 通过合资合作、风险投资等方式推进CCS、地热、地源热泵、 氢能和锂电池等领域技术快速发展
    贝克休斯 2030 年前碳排放减少 30%,2050年前实现
    净零排放
    双燃料压裂泵、 碳排放监测与管理、 自动化智能化解决方案;氢能/锂电池、CCS、地热、生物质能和储能等新能源新领域技术
    钻井承包商Patterson-UTI 致力于作业过程中减少碳排放量,使用创
    新的燃料解决方案
    双燃料/天然气钻完井装备、 锂电池储能、钻机自动化动力管理系统、远程作业和碳排放监测等
    H & P 通过优化钻机能源利用效率和提升钻井效
    率,2018年以来,Scope1减少23%,Scope2减
    少17%
    双燃料 / 天然气/网电钻完井装备、 钻机动力管理系统、飞轮和锂电池储能等
    Nabors 利用智能化、可持续解决方案实现碳减排,
    2016年以来单位进尺碳排放量减少30%
    钻机排放监测、双燃料钻完井装备、电力解决方案、混合动力管理系统、锂电池储能和钻井自动化技术等
    挪威Odfjell钻井公司 2025 年碳排放量减少 40%,2050年实现净
    零排放
    钻机动力管理系统、 飞轮及电池储能和海洋风电等
    丹麦Maersk钻井公司 到2030年将钻井作业产生的二氧化碳排放
    强度降低50%
    钻机动力管理系统、尾气处理和高温甲醇电池等
    注:scope1为企业内部直接的碳排放;scope2为企业外购电力和蒸汽生产过程中的碳排放;scope3为原料供应链生产过程中的碳排放。
    下载: 导出CSV
  • [1] 邹才能,熊波,薛华庆,等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发,2021,48(2):411–420.

    ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411–420.
    [2] 王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6.

    WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6.
    [3] 刘殊呈,粟科华,李伟,等. 油气上游业务温室气体排放现状与碳中和路径分析[J]. 国际石油经济,2021,29(11):22–33.

    LIU Shucheng, SU Kehua, LI Wei, et al. Greenhouse gas emission status of oil and gas upstream business and analysis on carbon neutrality path[J]. International Petroleum Economics, 2021, 29(11): 22–33.
    [4] BP. Statistical review of world energy[EB/OL]. [2021-10-18]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html.
    [5] BECK C, RASHIDBEIGI S, ROELOFSEN O, et al. The future is now: how oil and gas companies can decarbonize[EB/OL]. (2020-01-07)[2021-10-18]. https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-future-is-now-how-oil-and-gas-companies-can-decarbonize.
    [6] 曾涛,袁园. 斯伦贝谢公司适应能源转型的措施与启示[J]. 国际石油经济,2022,30(3):36–43. doi: 10.3969/j.issn.1004-7298.2022.03.005

    ZENG Tao, YUAN Yuan. Schlumberger’s measures adapting to energy transition and related inspiration[J]. International Petroleum Economics, 2022, 30(3): 36–43. doi: 10.3969/j.issn.1004-7298.2022.03.005
    [7] 丁根. 国际油服公司碳捕集、利用与封存业务的现状与展望[J]. 世界石油工业,2022,29(4):28–33.

    DING Gen. Current situation and prospects of carbon capture, utilization and sequestration business of international oilfield services companies[J]. World Petroleum Industry, 2022, 29(4): 28–33.
    [8] MCCULLOUGH D. Decarbonizing with digital: Improving drilling and well construction performance, sustainably[EB/OL]. (2021-09-24) [2021-10-18]. https://www.worldoil.com/magazine/2021/september-2021/features/decarbonizing-with-digital-improving-drilling-and-well-construction-performance-sustainably.
    [9] Baker Hughes. Our strategy[EB/OL]. [2022-05-31]. https://www.bakerhughes.com/company/2021-digitalannual-report/our-strategy.
    [10] BAKER HUGHES. Carbon capture, utilization and storage policy statement[EB/OL]. (2021-01-15) [2022-05-31]. https://www.bakerhughes.com/sites/bakerhughes/files/2021 − 03/2021 − 01%20Baker%20Hughes%20CCUS%20Policy%20-%20Final%20-%2001152021_0.pdf.
    [11] EYGUN C, BELGAROUI J, WU Yang, et al. Mitigating shale gas developments carbon footprint: evaluating and implementing solutions in argentina[R]. URTEC 2687987, 2017.
    [12] SEYBOLD E, GOSWICK S, KING G E, et al. Evolution of dual fuel pressure pumping for fracturing: methods, economics, field trial results and improvements in availability of fuel[R]. SPE 166443, 2013.
    [13] FEDER J. E-fleet: electric-powered fleets herald a new future, but it won’t happen overnight[J]. Journal of Petroleum Technology, 2021, 73(10): 23–26. doi: 10.2118/1021-0023-JPT
    [14] OEHRING J M. Environmental benefits of electric powered hydraulic fracturing[R]. SPE 177308, 2015.
    [15] HOPKINS D, FOX I, MOLEN D. Gas powered engines with energy storage-a game changer in land drilling[R]. SPE 199671, 2020.
    [16] PATTERSON-UTI. Air quality, greenhouse gas emissions reduction and energy efficiency[EB/OL]. [2022 -05-31]. https://esg.patenergy.com/Environmental/Air-Quality-Emissions-and-Energy/.
    [17] WHITFIELD S. Automation-enabled fuel efficiency leads onshore drilling ESG[J]. Drilling Contractor, 2021, 77(5): 20–25.
    [18] VERHOEF R. Solutions for reduced carbon emissions and advances in power generation[R]. IPTC 22539, 2022.
    [19] SETTEMSDAL S. Applications of lithium-ion batteries in offshore oil & gas: The journey to building a low-emissions drilling rig[R]. OTC 30923, 2021.
    [20] WHITFIELD S. Zero-emission power-generation system in development for land rigs using hydrogen fuel cells[J]. Drilling Contractor, 2022, 78(5): 20–21.
    [21] BILGIN M, DONEN J, SCAINI V, et al. World’s first hybrid drilling rig[R]. SPE 199573, 2020.
    [22] WHITFIELD S. ‘Green’ innovations flourish amid drive for lower emissions[J]. Drilling Contractor, 2021, 77(5): 12–19.
    [23] YATES M R, BRAHIM I B, ALNOFAILY S M, et al. Sustaining remote operations adoption post pandemic: A major key to a net zero future[R]. SPE 205440, 2021.
    [24] MATHUR R K, MACPHERSON J, KRUEGER S, et al. A step change in drilling efficiency using remote operations[R]. OTC 30890, 2020.
    [25] 闫娜,李庆. 贝克休斯远程作业发展历程及启示[J]. 石油科技论坛,2021,40(5):79–84. doi: 10.3969/j.issn.1002-302x.2021.05.011

    YAN Na, LI Qing. Development process and enlightenment of Baker Hughes remote services[J]. Petroleum Science and Technology Forum, 2021, 40(5): 79–84. doi: 10.3969/j.issn.1002-302x.2021.05.011
    [26] SETTEMSDAL S O. Applying energy storage solutions ESS in offshore oil and gas to reduce emissions and costs[R]. SPE 195777, 2019.
    [27] Anon. Floating wind, hydrogen proposal aims to accelerate decarbonization of UK offshore oil and gas assets[J]. Drilling Contractor, 2021, 77(4): 13.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  21
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-09-29
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回