留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究

苑登御

苑登御. N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究[J]. 石油钻探技术,2022, 50(6):126-132 doi: 10.11911/syztjs.2022105
引用本文: 苑登御. N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究[J]. 石油钻探技术,2022, 50(6):126-132 doi: 10.11911/syztjs.2022105
YUAN Dengyu. Experimental study of CO2 huff and puff combined with N2 foam for enhanced oil recovery by three-dimensional physical models [J]. Petroleum Drilling Techniques,2022, 50(6):126-132 doi: 10.11911/syztjs.2022105
Citation: YUAN Dengyu. Experimental study of CO2 huff and puff combined with N2 foam for enhanced oil recovery by three-dimensional physical models [J]. Petroleum Drilling Techniques,2022, 50(6):126-132 doi: 10.11911/syztjs.2022105

N2泡沫/CO2复合吞吐提高采收率三维物理模拟试验研究

doi: 10.11911/syztjs.2022105
详细信息
    作者简介:

    苑登御(1987—),男,黑龙江大庆人,2010年毕业于北京化工大学材料科学与工程专业,2016年获中国石油大学(北京)油气田开发工程专业博士学位,工程师,主要从事油气田开发方面的研究工作。E-mail:137008985@qq.com

  • 中图分类号: TE345

Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models

  • 摘要:

    经CO2多轮吞吐后,华北某稠油油藏增油效果逐年变差,为进一步改善开发效果,采用N2泡沫/CO2复合吞吐提高原油采收率。为明确N2泡沫/CO2复合吞吐提高原油采收率机理,通过泡沫体系动、静态性能评价试验,评价了N2泡沫体系的封堵性能;采用自主研制的三维非均质物理模型开展了N2泡沫/CO2复合吞吐室内物理模拟试验,分析了N2泡沫与CO2复合提高采收率的效果及其相关机理。试验结果表明,质量分数0.3%的α-烯烃磺酸钠(AOS)和质量分数0.3%的聚丙烯酰胺(HPAM)可形成稳定的泡沫体系,其封堵率达到99.57%,可实现对高渗层的有效封堵。三维试验结果表明,N2泡沫/CO2复合吞吐可使采收率提高22.74百分点,吞吐过程中含水率最低可降至2.07%,有效作用期是纯CO2吞吐的2.5~3.0倍。N2泡沫/CO2复合吞吐可有效扩大CO2和后续水的波及体积,为其后续现场应用提供理论支撑。

     

  • 图 1  N2泡沫/CO2复合吞吐试验三维非均质岩心模型

    Figure 1.  Three-dimensional heterogeneous core model for experiments on CO2 huff and puff combined with N2 foam

    图 2  发泡体积和半衰期与AOS质量分数的关系

    Figure 2.  Variation of foam volume and half-life period with AOS mass fractions

    图 3  发泡体积和半衰期与HPAM质量分数的关系

    Figure 3.  Variation of foam volume and half-life period with HPAM mass fractions

    图 4  不同气液比下N2泡沫体系注入驱替压差曲线

    Figure 4.  Displacement pressure drop curves of N2 foam with different gas/liquid ratios

    图 5  纯CO2吞吐与N2泡沫/CO2复合吞吐生产动态曲线

    Figure 5.  Dynamic production curves of CO2 huff and puff combined with N2 foam and pure CO2 huff and puff

    表  1  试验岩心的基础物性参数

    Table  1.   Basic physical parameters of test cores

    编号泡沫注入量/PV孔隙体积/mL气测渗透率/mD孔隙度,%
    10.012072 82734.07
    20.032042 71833.58
    30.052103 13734.57
    40.082133 35935.06
    下载: 导出CSV

    表  2  不同配方泡沫体系的综合指数

    Table  2.   Composite indexes of foam systems with different formulas

    编号AOS质量
    分数,%
    HPAM质量
    分数,%
    泡沫综合指数/
    (mL·min)
    10.154 252
    20.261 664
    30.30.375 094
    40.483 025
    50.587 995
    60.1 7 665
    70.238 745
    80.30.375 094
    90.491 800
    100.599 693
    下载: 导出CSV

    表  3  N2泡沫体系封堵性能评价结果

    Table  3.   Evaluation results of plugging effect of N2 foam systems

    编号泡沫
    气液比
    水驱平衡
    压差/kPa
    泡沫稳定
    压差/kPa
    阻力
    系数
    封堵
    率,%
    11∶26.02 556.17 92.2998.92
    21.0∶1.54.94 740.43149.8899.33
    31∶15.091190.09233.9699.57
    42∶15.071049.09206.7999.51
    下载: 导出CSV

    表  4  纯CO2吞吐和N2泡沫/CO2复合吞吐三维物理模拟试验结果

    Table  4.   Results of three-dimensional physical simulation experiments on CO2 huff and puff combined with N2 foam and pure CO2 huff and puff

    编号试验方案吞吐轮次注入量采收率增幅/百分点最低含水率,%有效期内吞吐量/PV
    泡沫/mLCO2/mL(标况)
    1纯CO2吞吐11 128 1.7161.100.09
    21 200 3.1854.730.12
    31 443 2.9545.950.13
    41 228 2.7558.010.12
    均值1 250 2.6554.950.12
    总和5 00010.590.46
    2N2泡沫/CO2
    复合吞吐
    1 401 138 8.98 2.070.39
    2 401 130 4.3631.290.28
    3 401 035 5.1165.010.28
    4 401 095 4.2958.420.24
    均值 401 100 5.6939.200.30
    总和1604 40022.741.19
    下载: 导出CSV
  • [1] 王晓燕,章杨,张杰,等. 稠油油藏注CO2吞吐提高采收率机制[J]. 中国石油大学学报(自然科学版),2021,45(6):102–111.

    WANG Xiaoyan, ZHANG Yang, ZHANG Jie, et al. EOR mechanisms of CO2 huff and puff process for heavy oil recovery[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 102–111.
    [2] 郭文轩,赵仁保,陈昌剑. CO2对春17井区稠油的溶解降黏特性及吞吐效果[J]. 西安石油大学学报((自然科学版),2021,36(1):66–72.

    GUO Wenxuan, ZHAO Renbao, CHEN Changjian. Dissolution viscosity-reducing performance and huff-puff effect of CO2 to heavy oil in Chun-17 Wellblock[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(1): 66–72.
    [3] ZHOU Xiang, YUAN Qingwang, PENG Xiaolong, et al. A critical review of the CO2 huff ‘n’ puff process for enhanced heavy oil recovery[J]. Fuel, 2018, 215: 813–824. doi: 10.1016/j.fuel.2017.11.092
    [4] AHADI A, TORABI F. Effect of light hydrocarbon solvents on the performance of CO2-based cyclic solvent injection (CSI) in heavy oil systems[J]. Journal of Petroleum Science and Engineering, 2018, 163: 526–537. doi: 10.1016/j.petrol.2017.12.062
    [5] 毕永斌,耿文爽,张雪娜,等. 高含水油藏全生命周期剩余油挖潜三参数研究[J]. 断块油气田,2021,28(1):109–114.

    BI Yongbin, GENG Wenshuang, ZHANG Xuena, et al. Study on three parameters of remaining oil potential tapping in high water cut reservoir during its whole life cycle[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 109–114.
    [6] 史英,盖长城,颜菲,等. 稠油油藏CO2吞吐合理吞吐轮次[J]. 大庆石油地质与开发,2017,36(1):129–133.

    SHI Ying, GAI Changcheng, YAN Fei, et al. Reasonable cyclic times of CO2 huff and puff for heavy oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1): 129–133.
    [7] 张娟,周立发,张晓辉,等. 浅薄层稠油油藏水平井CO2吞吐效果[J]. 新疆石油地质,2018,39(4):485–491.

    ZHANG Juan, ZHOU Lifa, ZHANG Xiaohui, et al. Effects of CO2 huff and puff in horizontal wells in shallow-burial thin heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2018, 39(4): 485–491.
    [8] 郝宏达,侯吉瑞,黄捍东,等. 冀东浅层稠油油藏CO2/N2复合气体吞吐提高采收率的可行性[J]. 油田化学,2020,37(1):80–85.

    HAO Hongda, HOU Jirui, HUANG Handong, et al. Feasibilty of gas-EOR using CO2/N2 mixture for a shallow-buried heavy oil reservoir in Jidong Oilfield[J]. Oilfield Chemistry, 2020, 37(1): 80–85.
    [9] 郑玉飞,李翔,徐景亮,等. 渤海P油田层内生成CO2调驱技术[J]. 石油钻探技术,2020,48(2):108–112.

    ZHENG Yufei, LI Xiang, XU Jingliang, et al. In-situ CO2 generation technology in Bohai P Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 108–112.
    [10] 赵凤兰,宋黎光,冯海如,等. 厚层砂岩油藏原油密度影响下的CO2驱重力超覆实验[J]. 断块油气田,2021,28(6):842–847.

    ZHAO Fenglan, SONG Liguang, FENG Hairu, et al. Experimental study of CO2 gravity segregation effected by off density in thick sandstone reservoirs[J]. Fault-Block Oil and Gas Field, 2021, 28(6): 842–847.
    [11] 张怿赫,盛家平,李情霞,等. CO2吞吐技术应用进展[J]. 特种油气藏,2021,28(6):1–10.

    ZHANG Yihe, SHENG Jiaping, LI Qingxia, et al. Advances in the application of CO2 stimulation technology[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 1–10.
    [12] 赵凤兰,付忠凤,郝宏达,等. 氮气泡沫吞吐的控水增油机理[J]. 油田化学,2018,35(3):451–457.

    ZHAO Fenglan, FU Zhongfeng, HAO Hongda, et al. Mechanism of nitrogen foam preventing edge-water coning in huff-n-puff well[J]. Oilfield Chemistry, 2018, 35(3): 451–457.
    [13] 王鹏,赵凤兰,侯吉瑞,等. 氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J]. 油气地质与采收率,2018,25(5):110–115.

    WANG Peng, ZHAO Fenglan, HOU Jirui, et al. An experimental study of horizontal Bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 110–115.
    [14] 周光林, 寇磊, 汤云浦, 等. 浅层天然水驱油藏氮气泡沫控水稳油技术研究[J]. 中国矿业, 2018, 27(增刊1): 361-364.

    ZHOU Guanglin, KOU Lei, TANG Yunpu, et al. Study on water control technology of nitrogen foam in shallow natural water drive reservoir[J]. China Mining Magazine, 2018, 27(supplement 1): 361-364.
    [15] CHEN Danqi, ZHAO Hongwei, LIU Kun, et al. The effect of emulsion and foam on anti-water coning during nitrogen foam injection in bottom-water reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107766. doi: 10.1016/j.petrol.2020.107766
    [16] 李兆敏,徐正晓,李宾飞,等. 泡沫驱技术研究与应用进展[J]. 中国石油大学学报(自然科学版),2019,43(5):118–127.

    LI Zhaomin, XU Zhengxiao, LI Binfei, et al. Advances in research and application of foam flooding technology[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 118–127.
    [17] 孙鹏霄,苏崇华,孟伟斌. 氮气泡沫在海上高含水油田选择性堵水中的应用[J]. 石油钻采工艺,2016,38(1):110–113.

    SUN Pengxiao, SU Chonghua, MENG Weibin. Application of nitrogen foam in selective water plugging of offshore high water content oil field[J]. Oil Drilling & Production Technology, 2016, 38(1): 110–113.
    [18] HE Gang, LI Huabin, GUO Chengfei, et al. Stable foam systems for improving oil recovery under high-temperature and high-salt reservoir conditions[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110145. doi: 10.1016/j.petrol.2022.110145
    [19] HANSSEN J E. Foam as a gas-blocking agent in petroleum reservoirs I: Empirical observations and parametric study[J]. Journal of Petroleum Science and Engineering, 1993, 10(2): 117–133. doi: 10.1016/0920-4105(93)90036-E
    [20] 吕伟,刘笑春,白海龙,等. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术,2021,49(5):88–93.

    LYU Wei, LIU Xiaochun, BAI Hailong, et al. Laboratory test study of CO2 responsive enhanced foam system[J]. Petroleum Drilling Techniques, 2021, 49(5): 88–93.
    [21] 张旋,张贵才,葛际江,等. 聚合物强化CO2泡沫稳定性能研究[J]. 断块油气田,2020,27(6):799–802.

    ZHANG Xuan, ZHANG Guicai, GE Jijiang, et al. Research on the stability of polymer enhanced CO2 foam[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 799–802.
    [22] 牟汉生,陆文明,曹长霄,等. 深水浊积岩油藏提高采收率方法研究:以安哥拉X油藏为例[J]. 石油钻探技术,2021,49(2):79–89.

    MOU Hansheng, LU Wenming, CAO Changxiao, et al. Study on enhanced oil recovery method in deep-water turbidite reservoirs: a case study of X reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79–89.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 录用日期:  2022-10-24
  • 修回日期:  2022-09-10
  • 网络出版日期:  2022-11-14

目录

    /

    返回文章
    返回