留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可溶性球座Fe-Mn合金力学及腐蚀性能研究

王维 严锐锋 魏克颖 吴红钦 屈文涛

王维,严锐锋,魏克颖,等. 可溶性球座Fe-Mn合金力学及腐蚀性能研究[J]. 石油钻探技术,2022, 50(6):133-138 doi: 10.11911/syztjs.2022103
引用本文: 王维,严锐锋,魏克颖,等. 可溶性球座Fe-Mn合金力学及腐蚀性能研究[J]. 石油钻探技术,2022, 50(6):133-138 doi: 10.11911/syztjs.2022103
WANG Wei, YAN Ruifeng, WEI Keying, et al. Study on mechanical and corrosion properties of Fe-Mn alloy for soluble ball seats [J]. Petroleum Drilling Techniques,2022, 50(6):133-138 doi: 10.11911/syztjs.2022103
Citation: WANG Wei, YAN Ruifeng, WEI Keying, et al. Study on mechanical and corrosion properties of Fe-Mn alloy for soluble ball seats [J]. Petroleum Drilling Techniques,2022, 50(6):133-138 doi: 10.11911/syztjs.2022103

可溶性球座Fe-Mn合金力学及腐蚀性能研究

doi: 10.11911/syztjs.2022103
基金项目: 陕西省重点研发计划项目“井下服役耐高温钛基SMA智能驱动封隔技术研究”(编号:2022GY-401)资助
详细信息
    作者简介:

    王维(1988—),陕西西安人,2011年毕业于西北大学资源勘察工程专业,2014年获西北大学能源地质学专业硕士学位,工程师,主要从事常规油气田提高采收率方面的研究工作。E-mail:375616824@qq.com

  • 中图分类号: TE925.3

Study on Mechanical and Corrosion Properties of Fe-Mn Alloy for Soluble Ball Seats

  • 摘要:

    高温高压腐蚀环境下,可溶性球座会因材料强度、硬度不足及降解过快等原因过早失效。为此,采用OM、SEM、XRD表征可溶性球座材料Fe-Mn合金的微观结构与相成分,开展电化学测试、力学性能测试、加速浸泡腐蚀试验及高温高压浸泡腐蚀试验,分析了Fe-Mn合金的力学及腐蚀性能。测试结果表明,锰元素有细化晶粒的作用,随着锰含量增大,合金硬度和屈服强度呈先增大后减小趋势,Fe-5Mn合金硬度和屈服强度分别为345 HV和812 MPa;锰含量增大,自腐蚀电位负移,腐蚀电流密度增大,Fe-5Mn合金自腐蚀电流密度为4.64×10-5 mA/cm2。在长期加速浸泡腐蚀试验环境下,锰含量增大,导致腐蚀速率降低,Fe-5Mn极限降解速率为4.3 mm/a;长期高温高压浸泡试验条件下,腐蚀初期锰含量增大,提升了腐蚀速率,腐蚀后期合金整体腐蚀速率缓慢且趋于同一水平,Fe-5Mn满足作为可溶性球座材料的性能要求。研究结果可为选择Fe-Mn合金作为井下可溶性球座材料提供参考。

     

  • 图 1  不同锰含量下Fe-Mn合金的显微组织

    Figure 1.  Microstructure of Fe-Mn alloy with different Mn contents

    图 2  不同锰含量下Fe-Mn合金的X射线衍射图谱

    Figure 2.  X-ray diffraction patterns of Fe-Mn alloy with different Mn contents

    图 3  不同锰含量下Fe-Mn合金的显微维氏硬度

    Figure 3.  Micro Vickers hardness of Fe-Mn alloy with different Mn contents

    图 4  不同锰含量下Fe-Mn合金的单向压缩应力-应变曲线

    Figure 4.  Unidirectional compressive stress-strain of Fe-Mn alloy with different Mn contents

    图 5  不同锰含量下Fe-Mn合金的开路电位

    Figure 5.  Open circuit potential of Fe-Mn alloy with different Mn contents

    图 6  不同锰含量下Fe-Mn合金的动电位极化曲线

    Figure 6.  Potentiodynamic polarization curves of Fe-Mn alloy with different Mn contents

    图 7  不同锰含量下Fe-Mn合金的加速浸泡腐蚀速率

    Figure 7.  Accelerated immersion corrosion rate of Fe-Mn alloy with different Mn contents

    图 8  不同锰含量下Fe-Mn合金的高温高压浸泡腐蚀速率

    Figure 8.  High-temperature and high-pressure immersion corrosion rate of Fe-Mn alloy with different Mn contents

    图 9  Fe-5Mn高温高压浸泡腐蚀微观形貌

    Figure 9.  Microstructure of Fe-5Mn after high-temperature and high-pressure immersion corrosion

    表  1  Fe-Mn合金各元素设计含量与实际含量

    Table  1.   Designed value and actual value of Fe-Mn alloy compositions

    样品各元素设计含量,%各元素实际含量,%
    FeMnFeMn
    Fe-5Mn95.005.0094.725.28
    Fe-10Mn90.0010.0089.9110.09
    Fe-15Mn85.0015.0084.0415.96
    Fe-20Mn80.0020.0079.4420.56
    下载: 导出CSV
  • [1] 熊友明,刘理明,张林,等. 我国水平井完井技术现状与发展建议[J]. 石油钻探技术,2012,40(1):1–6. doi: 10.3969/j.issn.1001-0890.2012.01.001

    XIONG Youming, LIU Liming, ZHANG Lin, et al. Present status and development comments on horizontal well completion techniques in China[J]. Petroleum Drilling Techniques, 2012, 40(1): 1–6. doi: 10.3969/j.issn.1001-0890.2012.01.001
    [2] 秦金立,吴姬昊,崔晓杰,等. 裸眼分段压裂投球式滑套球座关键技术研究[J]. 石油钻探技术,2014,42(5):52–56. doi: 10.11911/syztjs.201405009

    QIN Jinli, WU Jihao, CUI Xiaojie, et al. Key technology on ball-activated sleeve for open hole staged fracturing[J]. Petroleum Drilling Techniques, 2014, 42(5): 52–56. doi: 10.11911/syztjs.201405009
    [3] 安杰,唐梅荣,张矿生,等. 致密油水平井全可溶桥塞体积压裂技术评价与应用[J]. 特种油气藏,2019,26(5):159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027

    AN Jie, TANG Meirong, ZHANG Kuangsheng, et al. Evaluation and application of volume fracturing with full-soluble plug in tight oil horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027
    [4] 冯长青,邵媛,任勇,等. 水平井多级滑套压裂工艺中的压裂球返排规律[J]. 断块油气田,2018,25(4):545–548.

    FENG Changqing, SHAO Yuan, REN Yong, et al. Returning mode of fracturing ball used by horizontal well multi-sleeve fracturing technology[J]. Fault-Block Oil and Gas Field, 2018, 25(4): 545–548.
    [5] 任国富,赵粉霞,冯长青,等. 套管球座压裂工具研制与试验[J]. 钻采工艺,2017,40(5):76–77. doi: 10.3969/J.ISSN.1006-768X.2017.05.23

    REN Guofu, ZHAO Fenxia, FENG Changqing, et al. Development and trial of casing ballseat fracturing tool[J]. Drilling & Production Technology, 2017, 40(5): 76–77. doi: 10.3969/J.ISSN.1006-768X.2017.05.23
    [6] 杨同玉,魏辽,李强,等. 全自溶分段压裂滑套的研制与应用[J]. 特种油气藏,2019,26(3):153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029

    YANG Tongyu, WEI Liao, LI Qiang, et al. Development and application of fully auto-soluble multi-stage fracturing sliding sleeve[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029
    [7] 王林,平恩顺,张建华,等. 可降解桥塞研制及其承压性能试验[J]. 石油机械,2017,45(2):64–67.

    WANG Lin, PING Enshun, ZHANG Jianhua, et al. Development and pressure bearing performance experiment of the degradable bridge plug[J]. China Petroleum Machinery, 2017, 45(2): 64–67.
    [8] 黄传艳,李双贵,李林涛,等. 井下压裂暂堵工具用可溶金属材料研究进展[J]. 石油矿场机械,2019,48(1):68–72. doi: 10.3969/j.issn.1001-3482.2019.01.014

    HUANG Chuanyan, LI Shuanggui, LI Lintao, et al. Research progress on the dissolvable metal for downhole temporary plugging tools[J]. Oil Field Equipment, 2019, 48(1): 68–72. doi: 10.3969/j.issn.1001-3482.2019.01.014
    [9] XU Zhiyue, RICHARD B M, SOLFRONK M D. Nanostructured material based completion tools enhance well productivity[R]. IPTC-16538-MS, 2013.
    [10] 张洪宝. 可分解纳米结构混合物在完井工具中的应用[J]. 石油钻探技术,2014,42(4):119.

    ZHANG Hongbao. Application of decomposable nanostructure mixture in well completion tools[J]. Petroleum Drilling Techniques, 2014, 42(4): 119.
    [11] 魏辽. 石墨烯增强铝基可溶球座研制与性能评价[J]. 石油钻探技术,2022,50(2):113–117. doi: 10.11911/syztjs.2021134

    WEI Liao. Development and performance evaluation of a graphene reinforced aluminum-based soluble ball seat[J]. Petroleum Drilling Techniques, 2022, 50(2): 113–117. doi: 10.11911/syztjs.2021134
    [12] 解雪,刘昊一,朱雪梅. 新型生物可降解Fe-Mn合金在Hanks溶液中的电化学腐蚀行为[J]. 大连交通大学学报,2017,38(4):134–137.

    XIE Xue, LIU Haoyi, ZHU Xuemei. Electrochemical corrosion behavior of new biomedical Fe-Mn alloy in Hanks solution[J]. Journal of Dalian Jiaotong University, 2017, 38(4): 134–137.
    [13] VENEZUELA J, DARGUSCH M S. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends[J]. Current Opinion in Solid State and Materials Science, 2020, 24(3): 100822. doi: 10.1016/j.cossms.2020.100822
    [14] 刘玉玲,张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报,2019,33(增刊2):331–335.

    LIU Yuling, ZHANG Xiuqing. Application and prospect of biomedical Fe-Mn alloy[J]. Materials Reports, 2019, 33(supplement2): 331–335.
    [15] HERMAWAN H, DUBÉ D, MANTOVANI D. Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents[J]. Journal of Biomedical Materials Research Part A, 2010, 93A(1): 1–11.
    [16] 朱雪梅,张彦生. 锰与铝对Fe-Mn合金在Na2SO4水溶液中电化学腐蚀性能的影响[J]. 大连铁道学院学报,1992,13(2):57–60.

    ZHU Xuemei, ZHANG Yansheng. The effect of the manganese and aluminium content on the electrochemical corrosion characterization of Fe-Mn alloys in Na2SO4 solution[J]. Journal of Dalian Institute of Railway Technology, 1992, 13(2): 57–60.
    [17] 田骏,张昆,王金. Mn含量对低合金钢耐海水腐蚀性能的影响[J]. 材料保护,2019,52(11):33–37. doi: 10.16577/j.cnki.42-1215/tb.2019.11.007

    TIAN Jun, ZHANG Kun, WANG Jin. Effects of Mn content on the corrosion resistance of low alloy steels in seawater[J]. Materials Protection, 2019, 52(11): 33–37. doi: 10.16577/j.cnki.42-1215/tb.2019.11.007
    [18] BALYANOV A, KUTNYAKOVA J, AMIRKHANOVA N A, et al. Corrosion resistance of ultra fine-grained Ti[J]. Scripta Materialia, 2004, 51(3): 225–229. doi: 10.1016/j.scriptamat.2004.04.011
    [19] MOSAVAT S H, SHARIAT M H, BAHROLOLOOM M E. Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings[J]. Corrosion Science, 2012, 59: 81–87. doi: 10.1016/j.corsci.2012.02.012
    [20] 吕博,何亚荣,郑春雷,等. 纳米高锰钢在海水腐蚀介质中的耐蚀性能研究[J]. 燕山大学学报,2016,40(1):9–15.

    LYU Bo, HE Yarong, ZHENG Chunlei, et al. Corrosion behaviors of nanocrystalline Hadfield steel in seawater[J]. Journal of Yanshan University, 2016, 40(1): 9–15.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 录用日期:  2022-10-04
  • 修回日期:  2022-08-20
  • 网络出版日期:  2022-11-15

目录

    /

    返回文章
    返回