The Up-to-Date Electric Shale Gas Fracturing Technologies of Sinopec and Suggestions for Further Improvements
-
摘要:
随着技术的进步和环保要求的日益提高,页岩气压裂施工采用传统柴油机驱动压裂泵车组施工噪声大、能耗高和占地面积广等不足逐步显现出来,电动压裂设备因其功率和排量大、噪声和能耗低、施工占地少等优势逐步得到规模应用。在系统总结分析国内外电动压裂技术的发展应用历程及特点的基础上,重点介绍了中国石化电动压裂技术的应用规模、时效和成本,剖析了存在的不足,提出了全面升级电动压裂系统、强化施工过程管理、大规模推广应用全电动压裂技术等建议,以期推动我国电动压裂技术发展和应用,为我国深层和常压页岩气开发提供经济高效的技术手段。
Abstract:As technology develops and the requirements for environmental protection rise, the disadvantages of traditional diesel-powered fracturing pumping units manifested themselves and they include loud construction noise, high energy consumption, and large space requirements for operations. As a result, electric fracturing equipment has gradually been adopted on a large scale owing to its advantages of high power, high pumping rate, low noise and energy consumption, and small space requirements for operations. The characteristics of electric fracturing technologies and their development and application history in China and abroad were studied and enumerated. The application scale, timeliness, and cost of Sinopec’s electric fracturing technologies were highlighted, and the shortages were analyzed. Multiple suggestions were proposed, including comprehensively upgrading the electric fracturing system, improving treatment process management, and conducting large-scale promotion and application of all-electric fracturing technologies. This research is expected to promote the development and application of fracturing technologies and provide economic technical means for the development of deep and normal-pressure shale gas in China.
-
Keywords:
- shale gas /
- low-cost development /
- green development /
- electric fracturing equipment /
- develop suggestion /
- Sinopec
-
-
-
[1] 我国页岩气可采资源潜力为25万亿立方米[EB/OL]. (2012-03- 29)[2022-01-10]. http://www.cinic.org.cn/xw/kx/279172.html?from=timeline. The recoverable resource potential of shale gas in China is 25 trillion m3[EB/OL]. (2012-03-29) [2022-01-12]. http://www.cinic.org.cn/xw/kx/279172.html?from=timeline.
[2] 吕红桥. 2020年我国页岩气产量增长超过3成 成为天然气增产主力军[EB/OL]. (2022-02-10)[2022-0-11].https://baijiahao.baidu.com/s?id=1691289018212061353&wfr=spider&for=pc. LYU Hongqiao. China’s shale gas production will increase by more than 30% in 2020 and become the main force of natural gas production increase[EB/OL]. (2022-02-10) [2022-02-11].https://baijiahao.baidu.com/s?id=1691289018212061353&wfr=spider&for=pc.
[3] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073 ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep sShale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
[4] 李军,李玉梅,张德龙,等. 页岩气井分段压裂套损影响因素分析[J]. 断块油气田,2017,24(3):387–390. LI Jun, LI Yumei, ZHANG Delong, et al. Analysis of casing damage for staged fracturing in shale gas well[J]. Fault-Block Oil & Gas Field, 2017, 24(3): 387–390.
[5] 陈新安. 页岩气水平井分段压裂微地震监测认识及应用[J]. 特种油气藏,2017,24(1):170–174. CHEN Xin’an. Understanding and application of microseism monitoring over staged fracturing in horizontal wells for shale gas development[J]. Special Oil & Gas Reservoirs, 2017, 24(1): 170–174.
[6] 张树立,李心成. 适合中国大型页岩气压裂成套装备的解决方案[J]. 石油机械,2018,46(12):60–67. ZHANG Shuli, LI Xincheng. The solution of massive hydraulic fracturing of shale gas in China[J]. China Petroleum Machinery, 2018, 46(12): 60–67.
[7] 杨怀成,夏苏疆,高启国,等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发,2021,11(3):348–355. YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2021, 11(3): 348–355.
[8] 张国荣,王俊方,张龙富,等. 南川常压页岩气田高效开发关键技术进展[J]. 油气藏评价与开发,2021,11(3):365–376. ZHANG Guorong, WANG Junfang, ZHANG Longfu, et al. Key technical progress in efficient development of Nanchuan normalpressure shale gas field[J]. Reservoir Evaluation and Development, 2021, 11(3): 365–376.
[9] 赵绪平,孔丹,常亮. 2500型超高压页岩气压裂车开发研究[J]. 石油规划设计,2017,28(3):12–14. ZHAO Xuping, KONG Dan, CHANG Liang. Development and research of model 2500 ultra high pressure shale gas fracturing truck[J]. Petroleum Planning & Engineering, 2017, 28(3): 12–14.
[10] 田雨,谢梅英. 新型大功率电动压裂泵组的研制[J]. 石油机械,2017,45(4):94–97. TIAN Yu, XIE Meiying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery, 2017, 45(4): 94–97.
[11] 王云海,陈新龙,吴汉川,等. 页岩气压裂连续输砂关键设备的研制[J]. 石油机械,2016,44(3):102–104. WANG Yunhai, CHEN Xinlong, WU Hanchuan, et al. Continuous sand transport unit for fracturing in shale gas development[J]. China Petroleum Machinery, 2016, 44(3): 102–104.
[12] 王晓宇. 国外压裂装备与技术新进展[J]. 石油机械,2016,44(11):72–79. WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016, 44(11): 72–79.
[13] 张斌,李磊,邱勇潮,等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业,2020,40(5):50–57. doi: 10.3787/j.issn.1000-0976.2020.05.006 ZHANG Bin, LI Lei, QIU Yongchao, et al. Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natural Gas Industry, 2020, 40(5): 50–57. doi: 10.3787/j.issn.1000-0976.2020.05.006
[14] 王庆群. 利用电力开展页岩气压裂规模应用的分析及建议[J]. 石油机械,2018,46(7):89–93. WANG Qingqun. Analysis and suggestion on the application of electric power on shale gas fracturing[J]. China Petroleum Machinery, 2018, 46(7): 89–93.
[15] 樊开赟,荣双,周劲,等. 电动压裂泵在页岩气压裂中的应用[J]. 钻采工艺,2017,40(5):81–83. doi: 10.3969/J.ISSN.1006-768X.2017.05.25 FAN Kaiyun, RONG Shuang, ZHOU Jin, et al. Application of electric fracturing pump in fracturing in shale gas reservoirs[J]. Drilling & Production Technology, 2017, 40(5): 81–83. doi: 10.3969/J.ISSN.1006-768X.2017.05.25
[16] 刘红磊,韩倩,李颖,等. 彭水区块水平井清水连续加砂压裂技术[J]. 石油钻探技术,2015,43(1):13–19. doi: 10.11911/syztjs.201501003 LIU Honglei, HAN Qian, LI Ying, et al. Water fracturing with continuous sand for horizontal wells in the Pengshui block[J]. Petroleum Drilling Techniques, 2015, 43(1): 13–19. doi: 10.11911/syztjs.201501003
[17] 曾雨辰,杨保军. 页岩气水平井大型压裂设备配套及应用[J]. 石油钻采工艺,2013,35(6):78–82. ZENG Yuchen, YANG Baojun. Equipment outfitting and application for large-scale fracturing in shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2013, 35(6): 78–82.
[18] 吴汉川. 大型压裂装备应用问题解析及发展方向[J]. 石油机械,2017,45(12):53–57. WU Hanchuan. Issue Analysis of large scale fracturing equipment application and its development trend[J]. China Petroleum Machi-nery, 2017, 45(12): 53–57.
[19] 张增年,李华川,郑家伟,等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺,2020,43(2):41–44. doi: 10.3969/J.ISSN.1006-768X.2020.02.11 ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technical development prospect of fracturing equipment[J]. Drilling & Production Technology, 2020, 43(2): 41–44. doi: 10.3969/J.ISSN.1006-768X.2020.02.11
[20] 童征,展恩强,刘颖,等. 国内电驱压裂经济性和制约因素分析[J]. 国际石油经济,2020,28(7):53–62. doi: 10.3969/j.issn.1004-7298.2020.07.006 TONG Zheng, ZHAN Enqiang, LIU Ying, et al. Analysis of economy and constraints of electric-powered fracturing application in China[J]. International Petroleum Economics, 2020, 28(7): 53–62. doi: 10.3969/j.issn.1004-7298.2020.07.006
[21] 程强. 中国页岩气发展迎来2.0时代[N]. 中国石化报, 2020−12−07(005). CHENG Qiang. China shale gas development ushered in the 2.0 era[N]. Sinopec News, 2020−12−07(005).
-
期刊类型引用(10)
1. 黄婷,薛小佳,康博,董奇,周大伟,徐全胜. 重复压裂非均匀孔隙压力场对裂缝延伸的影响. 断块油气田. 2023(03): 475-479+522 . 百度学术
2. 李贤胜,邱小雪,陈明江,李玮,刘向君,杨孛. 基于等效介质理论的页岩声波数值模拟方法研究. 特种油气藏. 2023(03): 63-72 . 百度学术
3. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 . 百度学术
4. 袁飞宇,唐潮,张超,付亚飞,陈波. 团簇效应对裂缝连通性的影响. 特种油气藏. 2023(06): 107-113 . 百度学术
5. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 . 百度学术
6. Guang-Long Sheng,Hui Zhao,Jia-Ling Ma,Hao Huang,Hai-Yang Deng,Wen-Tao Zhan,Yu-Yang Liu. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method. Petroleum Science. 2023(05): 3002-3012 . 必应学术
7. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 . 百度学术
8. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 . 百度学术
9. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
10. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 . 百度学术
其他类型引用(0)