Research on the Length of Non-Magnetic Drilling Tools for MagneticInclinometer while Drilling and Its Influence Factors
-
摘要:
钻井过程中,磁性随钻测斜仪需要放置在无磁钻具中,以避免铁磁钻具磁化后感应磁场的干扰,但针对无磁钻具长度选取及影响因素的理论研究较少。为此,利用ANSYS有限元软件,建立了三维静态均匀强磁场,模拟得到了磁性随钻测斜仪所需无磁钻具的长度,并分析了井斜角、方位角、铁磁钻具壁厚和铁磁钻具长度等因素对磁性随钻测斜仪所需无磁钻具长度的影响。分析结果表明,磁性随钻测斜仪所需无磁钻具的临界长度与井斜角、方位角无明显的相关关系,与铁磁钻具壁厚、长度正相关;根据模拟数据,分析了井斜角和方位角对方位角偏差的影响,认为当存在固定轴向干扰磁场时,方位角偏差随井斜角、方位角变化而变化,这与施工经验相吻合。无磁钻具长度的优化方法和优化结果,为实际工程应用中磁性随钻测斜仪所需无磁钻具长度的优选提供了理论依据和参考。
Abstract:While drilling, a magnetic inclinometer should be placed inside the non-magnetic drilling tool to avoid the interference of magnetic fields induced by the magnetization of the ferromagnetic drilling tool. However, only a few theoretical studies focus on the influence and determination of the length of non-magnetic drilling tools.Therefore, with ANSYS, a finite element software, a 3D homogeneous strong static magnetic field was created, and the length for the non-magnetic drilling tools needed by the magnetic inclinometer were simulated, with the influences of inclination angle, azimuth angle, and the thickness and length of ferromagnetic drilling tool, etc. The results show that the critical length of the non-magnetic drilling tool had no obvious relationship with the inclination angle and azimuth angle, however, it had a positive correlation with the thickness and length of the ferromagnetic drilling tool. Based on simulated data, the influence of the inclination angle and azimuth angle on the deviation of the azimuth angle was analyzed. It was found that with a fixed axial interference magnetic field, the deviation of the azimuth angle varied with the change of inclination angles and azimuth angles, which was consistent with field practices. The optimized method and result of non-magnetic drilling tool length can serve as reference and theoretical basis for the length determination of non-magnetic drilling tool for magnetic inclinometer in actual survey practices.
-
-
表 1 二开中完最后5组测斜结果
Table 1 Inclination survey data at the last five points during the second section
测深/m 井斜角/(°) 方位角/(°) 3 632.52
3 642.18
3 651.81
3 661.47
3 690.1624.30
24.30
24.10
24.10
24.00104.10
103.90
103.90
103.70
103.05 -
[1] 许昊东,黄根炉,张然,等. 磁力随钻测量磁干扰校正方法研究[J]. 石油钻探技术,2014,42(2):102–106. XU Haodong, HUANG Genlu, ZHANG Ran, et al. Method of magnetic interference correction in survey with magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102–106.
[2] 孟庆威,姜天杰,刘泳敬,等. 基于有限元分析的方位角误差计算和修正[J]. 石油钻探技术,2022,50(3):66–73. doi: 10.11911/syztjs.2022031 MENG Qingwei, JIANG Tianjie, LIU Yongjing, et al. Calculation and correction of azimuth errors based on finite element analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66–73. doi: 10.11911/syztjs.2022031
[3] 张苏,管志川,王建云,等. 邻井套管对井斜方位角的影响[J]. 石油钻探技术,2013,41(6):51–55. doi: 10.3969/j.issn.1001-0890.2013.06.010 ZHANG Su, GUAN Zhichuan, WANG Jianyun, et al. Impact of casing on adjacent well azimuth[J]. Petroleum Drilling Techniques, 2013, 41(6): 51–55. doi: 10.3969/j.issn.1001-0890.2013.06.010
[4] 孟卓然. BHA轴向磁干扰对方位测量误差的影响:基于人工磁场模拟方法[J]. 石油学报,2020,41(8):1011–1018. doi: 10.7623/syxb202008010 MENG Zhuoran. Effect of BHA axial magnetic interference on the azimuth measurement error: a simulation method based on artificial magnetic field[J]. Acta Petrolei Sinica, 2020, 41(8): 1011–1018. doi: 10.7623/syxb202008010
[5] 李永慧,张晓明,龙达峰,等. 基于ANSYS的油井套管感应磁场有限元仿真[J]. 石油机械,2012,40(1):44–46. doi: 10.16082/j.cnki.issn.1001-4578.2012.01.015 LI Yonghui, ZHANG Xiaoming, LONG Dafeng, et al. Finite element simulation of oil well casing induced magnetic field based on ANSYS[J]. China Petroleum Machinery, 2012, 40(1): 44–46. doi: 10.16082/j.cnki.issn.1001-4578.2012.01.015
[6] RUSSELL M K, RUSSELL A W. Surveying of boreholes: US 4163324[P]. 1979-08-07.
[7] 范光第,隋海东,黄根炉,等. 基于ANSYS的邻井套管磁干扰有限元仿真[J]. 石油机械,2013,41(8):1–4. doi: 10.3969/j.issn.1001-4578.2013.08.001 FAN Guangdi, SUI Haidong, HUANG Genlu, et al. ANSYS-based finite element simulation of magnetic disturbance of casing in adjacent well[J]. China Petroleum Machinery, 2013, 41(8): 1–4. doi: 10.3969/j.issn.1001-4578.2013.08.001
[8] 郑德帅. 可旋转钻柱定向钻进工具设计及测试[J]. 石油钻探技术,2021,49(6):81–85. doi: 10.11911/syztjs.2021013 ZHENG Deshuai. Design and test for rotary slide drilling tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 81–85. doi: 10.11911/syztjs.2021013
[9] 范光第,蒲文学,赵国山,等. 磁力随钻测斜仪轴向磁干扰校正方法[J]. 石油钻探技术,2017,45(4):121–126. doi: 10.11911/syztjs.201704021 FAN Guangdi, PU Wenxue, ZHAO Guoshan, et al. Correction methods for axial magnetic interference of the magnetic inclinometer while drilling[J]. Petroleum Drilling Techniques, 2017, 45(4): 121–126. doi: 10.11911/syztjs.201704021
[10] 郝希宁,王宇,党博,等. 救援井电磁探测定位方法及工具研究[J]. 石油钻探技术,2021,49(3):75–80. doi: 10.11911/syztjs.2021005 HAO Xining, WANG Yu, DANG Bo, et al. Research on electromagnetic detection and positioning methods and tools for relief wells[J]. Petroleum Drilling Techniques, 2021, 49(3): 75–80. doi: 10.11911/syztjs.2021005
[11] van DONGEN J C M, MAEKIAHO L B. Method for determining the azimuth of a borehole: US4682421[P]. 1987-07-28.
[12] 王锐,崔朋波,刘培军. MWD独立误差源的确定分析[J]. 特种油气藏,2011,18(5):120–123. doi: 10.3969/j.issn.1006-6535.2011.05.033 WANG Rui, CUI Pengbo, LIU Peijun. Determinative analysis of MWD independent error sources[J]. Special Oil & Gas Reservoirs, 2011, 18(5): 120–123. doi: 10.3969/j.issn.1006-6535.2011.05.033
[13] 李翠,高德利,刘庆龙,等. 邻井随钻电磁测距防碰计算方法研究[J]. 石油钻探技术,2016,44(5):52–59. doi: 10.11911/syztjs.201605009 LI Cui, GAO Deli, LIU Qinglong, et al. A method of calculating of avoiding collisions with adjacent wells using electromagnetic ranging surveying while drilling tools[J]. Petroleum Drilling Techniques, 2016, 44(5): 52–59. doi: 10.11911/syztjs.201605009
[14] 鲁港,钟晓明,李胜中,等. 井眼轨迹单根控制的新计算方法[J]. 石油钻采工艺,2021,43(2):146–150. LU Gang, ZHONG Xiaoming, LI Shengzhong, et al. A new calculation method of well trajectory of joint control[J]. Oil Drilling & Production Technology, 2021, 43(2): 146–150.
[15] FINLAY C C, MAUS S, BEGGAN C D, et al. International geomagnetic reference field: the eleventh generation[J]. Geophysical Journal International, 2010, 183(3): 1216–1230. doi: 10.1111/j.1365-246X.2010.04804.x
[16] 车卫勤,谭勇志,叶伟娟,等. 套管坐标截面法推算磁干扰轨迹的研究与应用[J]. 石油钻采工艺,2021,43(2):170–176. CHE Weiqin, TAN Yongzhi, YE Weijuan, et al. Study and application of calculating the magnetic interference track by means of casing coordinate section method[J]. Oil Drilling & Production Technology, 2021, 43(2): 170–176.
[17] 宋晓健,郑邦贤,谭勇志,等. 基于数据融合的近钻头井眼轨迹参数动态测量方法[J]. 石油钻探技术,2022,50(1):38–44. doi: 10.11911/syztjs.2021054 SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, et al. Dynamic measurement method of near-bit borehole trajectory parameters based on data fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38–44. doi: 10.11911/syztjs.2021054
[18] 胡斌,马鸿彦,黄秉亚,等. 近钻头方位伽马随钻测量系统的研制与应用[J]. 石油钻采工艺,2021,43(5):613–618. HU Bin, MA Hongyan, HUANG Bingya, et al. Development and application of near-bit azimuth Gamma MWD system[J]. Oil Drilling & Production Technology, 2021, 43(5): 613–618.
-
期刊类型引用(3)
1. 魏锋,陈现,王迪,夏瑜. 海上少井条件下含水率计算方法研究及应用. 海洋石油. 2022(04): 63-66 . 百度学术
2. 王谦,谭茂金,石玉江,李高仁,程相志,罗伟平. 径向基函数神经网络法致密砂岩储层相对渗透率预测与含水率计算. 石油地球物理勘探. 2020(04): 864-872+704 . 百度学术
3. 王谦,石玉江,谭茂金,李高仁. 基于孔隙结构分类的致密砂岩含水率计算模型——以鄂尔多斯盆地陇东西部延长组长8_1储层为例. 石油物探. 2019(05): 669-680 . 百度学术
其他类型引用(5)