随钻多极子声波测井仪接收声系的优化设计与试验

孙志峰, 仇傲, 金亚, 李杰, 罗博, 彭凯旋

孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089
引用本文: 孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089
SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools [J]. Petroleum Drilling Techniques,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089
Citation: SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools [J]. Petroleum Drilling Techniques,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089

随钻多极子声波测井仪接收声系的优化设计与试验

基金项目: 国家自然科学基金项目“随钻声波远探测成像测井理论与实验方法”(编号:U21B2064)、中国海洋石油集团有限公司科研项目“旋转导向谱系化技术与产业化研究” (编号:YJB22YF002)联合资助
详细信息
    作者简介:

    孙志峰(1979—),男,河北沧州人,2004年毕业于石油大学(华东)应用物理专业,2020年获中国石油大学(华东)资源与地质工程专业博士学位,高级工程师,主要从事声波测井方法研究。E-mail:sunzhf3@cnooc.com.cn。

  • 中图分类号: TE27+1;P631.8+14

Optimal Design and Experimental Study of the Receiver Sonde in Multipole Acoustic LWD Tools

  • 摘要:

    随钻多极子声波测井仪的接收声系直接影响采集信号的质量和测井仪机械结构的稳定性。为此,采用有限元法与试验测量相结合的方法,优化设计了随钻多极子声波测井仪器的接收声系。接收声系模拟分析结果表明,接收声系的性能主要受压电陶瓷片厚度、面积、封装外壳厚度及表面平整度的影响:压电陶瓷片厚度越大,接收灵敏度越高,频率在15 kHz以下时压电陶瓷片表面积对接收灵敏度影响不大;接收声系封装外壳的厚度越小,表面平整度越好,接收灵敏度的变化幅度越小。在此基础上,采用3D打印技术加工了厚度分别为0.5和2.0 mm的长条方管铝制金属外壳,并对制作的接收声系进行了灵敏度试验,试验结果与理论计算结果基本吻合,采用薄壁接收声系外壳更有利于接收测量信号。随钻多极子接收声系的优化设计为国产随钻声波测井仪的研制提供了新思路。

    Abstract:

    The receiver sonde of multipole acoustic logging while drilling (LWD) tools directly affects the quality of collected signals and the stability of the tool’s mechanical structure. Therefore, the receiver sonde of multipole acoustic LWD tools was optimized in this study by combining finite element method and experimental measurements. The analysis of the receiver sonde simulation showed that the performance of the receiver sonde was mainly affected by the thickness and area of piezoelectric ceramic slices as well as the thickness and surface flatness of packaging shells. In addition, receiving sensitivity would be enhanced as the thickness of piezoelectric ceramic slices increased, and the area of piezoelectric ceramic slices had no obvious effect on receiving sensitivity when the frequency was below 15 kHz. Furthermore, the variation range of the receiving sensitivity would be smaller as the thickness of packaging shells decreased and the surface flatness increased. On this basis, long square tubes with aluminum shells were processed using 3D printing technology, with a thickness of 0.5 mm and 2.0 mm, respectively. Then, the fabricated receiver sonde was tested in terms of sensitivity, and the test results were in good agreement with the calculated results. As a result, it was demonstrated that thin-wall shells were more beneficial to the signal receiving of measurement. The optimal design of receiver sonde in multipole acoustic LWD tools will provide new possibilities for designing and developing acoustic LWD tools in China.

  • 图  1   随钻多极子接收声系二维截面示意

    Figure  1.   Two-dimensional cross section of receiver sonde in multipole acoustic LWD tool

    图  2   叠片型接收换能器的三维结构

    Figure  2.   Three-dimensional structure of laminated receiving transducer

    图  3   不同厚度陶瓷片的接收灵敏度曲线

    Figure  3.   Receiving sensitivity curves of piezoelectric ceramic slices with different thicknesses

    图  4   不同表面积压电陶瓷片的接收灵敏度曲线

    Figure  4.   Receiving sensitivity curves of piezoelectric ceramic slices with different areas

    图  5   不同铝壳厚度下的接收灵敏度曲线

    Figure  5.   Receiving sensitivity curves of different aluminum shell thicknesses

    图  6   接收声系的二维截面

    Figure  6.   Two-dimensional cross section of receiver sonde

    图  7   平整铝壳与不平整铝壳接收灵敏度的对比

    Figure  7.   Comparison of receiving sensitivity between flat and uneven aluminum shells

    图  8   接收声系骨架实物

    Figure  8.   Skeleton of receiver sonde

    图  9   3D打印的铝壳实物

    Figure  9.   Aluminum shell processed by 3D printing technology

    图  10   试验与数值计算得到的接收灵敏度曲线对比

    Figure  10.   Comparison of receiving sensitivity curves between experiment and calculation results

    图  11   试验装置示意

    Figure  11.   Experimental setup

    图  12   试验记录的测量波形

    Figure  12.   Waveforms recorded in experiments

  • [1]

    TANG X M, CHENG A. Quantitative borehole acoustic me-thods[M]. Amsterdam: Elsevier, 2004.

    [2] 庄春喜,李杨虎,孔凡童,等. 随钻斯通利波测井反演地层渗透率的理论、方法及应用[J]. 地球物理学报,2019,62(11):4482–4492. doi: 10.6038/cjg2019N0122

    ZHUANG Chunxi, LI Yanghu, KONG Fantong, et al. Formation permeability estimation using Stoneley waves from logging while drilling: theory, method, and application[J]. Chinese Journal of Geophysics, 2019, 62(11): 4482–4492. doi: 10.6038/cjg2019N0122

    [3] 林剑松,李盛清,刘忠华,等. 随钻划眼采集模式的过套管声波测井数值模拟与实验研究[J]. 地球物理学进展,2021,36(6):2496–2502. doi: 10.6038/pg2021EE0477

    LIN Jiansong, LI Shengqing, LIU Zhonghua, et al. Numerical simulation and experimental research of through casing sonic logging with redressing LWD acquisition mode[J]. Progress in Geophysics, 2021, 36(6): 2496–2502. doi: 10.6038/pg2021EE0477

    [4]

    DEGRANGE J M, HAWTHORN A, NAKAJIMA H, et al. Sonic while drilling: multipole acoustic tools for multiple answers[R]. SPE 128162, 2010.

    [5] 朱祖扬,吴海燕,李永杰,等. 钻铤结构对随钻声波测井响应的影响[J]. 石油钻探技术,2016,44(6):117–122. doi: 10.11911/syztjs.201606020

    ZHU Zuyang, WU Haiyan, LI Yongjie, et al. The effect of collar structure on acoustic logging response while drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117–122. doi: 10.11911/syztjs.201606020

    [6] 刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131.

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131.

    [7] 刘西恩,孙志峰,仇傲,等. EXDT正交偶极阵列声波测井仪在地层各向异性评价中的应用[J]. 测井技术,2010,34(6):564–568. doi: 10.3969/j.issn.1004-1338.2010.06.011

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Application of the EXDT cross-dipole array acoustic logging tool to anisotropic formations evaluation[J]. Well Logging Technology, 2010, 34(6): 564–568. doi: 10.3969/j.issn.1004-1338.2010.06.011

    [8] 李世平,唐炼,丛健生. 叠片型多极子阵列声波测井仪接收换能器灵敏度分析[J]. 测井技术,2012,36(6):620–623. doi: 10.3969/j.issn.1004-1338.2012.06.015

    LI Shiping, TANG Lian, CONG Jiansheng. Finite element analysis of receiving transducers for multipole acoustic array logging tool[J]. Well Logging Technology, 2012, 36(6): 620–623. doi: 10.3969/j.issn.1004-1338.2012.06.015

    [9]

    JIANG Runkun, MEI Lei, LIU Xien, et al. Understanding logging-while-drilling transducers with COMSOL Multiphysics® software[C]//COMSOL Conference 2014, Boston: Monix Energy Solutions, Inc, 2014.

    [10]

    TANG X M, WANG T, PATTERSON D. Multipole acoustic logging-while-drilling[R]. SEG-2002-0364, 2002.

    [11] 吴金平,乔文孝,车小花. 声波测井高灵敏度宽带接收器研究[J]. 中国石油大学学报(自然科学版),2014,38(6):54–60.

    WU Jinping, QIAO Wenxiao, CHE Xiaohua. Research on high-sensitivity and wide-band receiver used in acoustic well logging[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6): 54–60.

    [12] 孙志峰,唐晓明,苏远大,等. 随钻多极子声波测井仪接收换能器的数值模拟[J]. 测井技术,2019,43(2):118–121. doi: 10.16489/j.issn.1004-1338.2019.02.002

    SUN Zhifeng, TANG Xiaoming, SU Yuanda, et al. Numerical simulation of transducer of LWD multipole acoustic logging tool[J]. Well Logging Technology, 2019, 43(2): 118–121. doi: 10.16489/j.issn.1004-1338.2019.02.002

    [13] 栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵[M]. 修订版. 北京: 北京大学出版社, 2005: 326-336.

    LUAN Guidong, ZHANG Jinduo, WANG Renqian. Transducers piezoelectric and arrays[M]. Revised ed. Beijing: Peking University Press, 2005: 326-336.

    [14] 何晓,陈浩,王秀明. 充液圆槽中单极声波仪器响应数值模拟与分析[J]. 应用声学,2014,33(2):95–101. doi: 10.11684/j.issn.1000-310X.2014.02.001

    HE Xiao, CHEN Hao, WANG Xiuming. Numerical simulations and analyses of monopole sonic logging responses in a liquid-loaded trough[J]. Journal of Applied Acoustics, 2014, 33(2): 95–101. doi: 10.11684/j.issn.1000-310X.2014.02.001

    [15] 吴金平,陆黄生,朱祖扬,等. 随钻声波测井声系短节模拟样机试验研究[J]. 石油钻探技术,2016,44(2):106–111. doi: 10.11911/syztjs.201602018

    WU Jinping, LU Huangsheng, ZHU Zuyang, et al. Experimental study on the simulation prototype of acoustic nipples for logging-while-drilling (LWD)[J]. Petroleum Drilling Techniques, 2016, 44(2): 106–111. doi: 10.11911/syztjs.201602018

    [16] 朱祖扬,陆黄生,张卫,等. 随钻声波测井声系短节的研制与测试[J]. 石油钻探技术,2015,43(5):83–87. doi: 10.11911/syztjs.201505014

    ZHU Zuyang, LU Huangsheng, ZHANG Wei, et al. Development and testing of acoustic nipples while drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83–87. doi: 10.11911/syztjs.201505014

  • 期刊类型引用(6)

    1. 董添奇,杨旭辉. 近钻头钻压和扭矩的高精度温度补偿方法. 石油机械. 2024(04): 71-79 . 百度学术
    2. 孙养清,易先中,万继方,易军,吴霁薇,刁斌斌,陈志湘. 机械式复合冲击器的工作特性分析. 石油机械. 2024(06): 29-37+108 . 百度学术
    3. 白彬珍,曾义金,芦鑫,张进双,陶亮. 钻头破岩能量与岩石自适应匹配提速技术. 石油钻探技术. 2023(03): 30-36 . 本站查看
    4. 罗杰,柳军,李强. 深井钻柱纵-扭耦合下的黏滑振动特性分析. 石油机械. 2023(08): 139-147 . 百度学术
    5. 汪伟,陈杰,张鹏翔,柳贡慧,李军,查春青. 旋转配流式扭转冲击钻具设计与分析. 断块油气田. 2023(06): 1047-1052 . 百度学术
    6. 兰永飞,韩玉香,陈明勇,王虎. 扭力冲击器-螺杆复合钻进工艺应用实践. 钻探工程. 2023(S1): 399-404 . 百度学术

    其他类型引用(2)

图(12)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  120
  • PDF下载量:  39
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-02-16
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-06-22
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回