杨树坤,郭宏峰,郝涛,等. 海上油田电控智能控水采油工具研制及性能评价[J]. 石油钻探技术,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086
引用本文: 杨树坤,郭宏峰,郝涛,等. 海上油田电控智能控水采油工具研制及性能评价[J]. 石油钻探技术,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086
YANG Shukun, GUO Hongfeng, HAO Tao, et al. Development and performance evaluation of an electrically controlled intelligent water control and oil recovery tool for offshore oilfields [J]. Petroleum Drilling Techniques,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086
Citation: YANG Shukun, GUO Hongfeng, HAO Tao, et al. Development and performance evaluation of an electrically controlled intelligent water control and oil recovery tool for offshore oilfields [J]. Petroleum Drilling Techniques,2022, 50(5):76-81. DOI: 10.11911/syztjs.2022086

海上油田电控智能控水采油工具研制及性能评价

Development and Performance Evaluation of an Electrically Controlled Intelligent Water Control and Oil Recovery Tool for Offshore Oilfields

  • 摘要: 为了解决渤海油田高含水阶段生产井分层控水采油难题,提高生产井的稳油开发效果,研制了电控智能控水采油工具。工具采用单芯电缆实现井下供电和通讯,设计采用多测试通道并列结构,配备流量、含水率、温度和压力实时测试功能;采用超声波时差法测量单层产液量,采用射频法测量单层产液含水率,能够根据各层含水情况进行实时控制,实现生产井生产时的控水稳油。工具性能试验结果表明,电控智能控水采油工具在60 MPa压力下密封性能可靠,120 ℃温度下工作正常,含水率测量范围0~100%,在流量高时流量测量精度高,满足海上油田现场应用要求。电控智能控水采油工具为海上生产井实现分层采油、高效稳产开发提供了新的控水工具,也为下一步海上油田现场应用奠定了技术基础。

     

    Abstract: An intelligent water control and oil recovery tool with electrical control was developed to tackle the separate-layer water control and oil recovery difficulties of production wells in the high water cut stage of Bohai Oilfield and to improve the effect of oil production stabilization in the development of production wells. In designing the tool, a single-core cable was employed to ensure the power supply and communications, and multiple test channels in parallel were adopted to achieve real-time testing of the flow rate, water cut, temperature, and pressure. In addition, the ultrasonic time difference method was used to test the fluid production from a single layer, and the radio frequency method was applied to test the water cut in the fluid production of a single layer. With this tool, a real-time control could be achieved according to the water cut of each layer, and the water control and oil production stabilization could be achieved in the development of production wells. The performance tests of this tool demonstrated that the seal performance was reliable under 60 MPa, and it could operate normally at 120 ℃. The test range of water cut was from 0 to 100%, and the measuring accuracy was high for high flow rate, which satisfied the requirements of offshore oilfield applications. The developed tool provides a new water control tool for separate-layer oil production and the efficient and stable development of offshore production wells, and lays a foundation for its subsequent field application in offshore oilfields.

     

/

返回文章
返回