塔河油田缝洞型油藏“一井多控”高效开发关键技术

何成江, 姜应兵, 文欢, 李翔

何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏“一井多控”高效开发关键技术[J]. 石油钻探技术,2022, 50(4):37-44. DOI: 10.11911/syztjs.2022077
引用本文: 何成江,姜应兵,文欢,等. 塔河油田缝洞型油藏“一井多控”高效开发关键技术[J]. 石油钻探技术,2022, 50(4):37-44. DOI: 10.11911/syztjs.2022077
HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield [J]. Petroleum Drilling Techniques,2022, 50(4):37-44. DOI: 10.11911/syztjs.2022077
Citation: HE Chengjiang, JIANG Yingbing, WEN Huan, et al. Key technologies for high-efficiency one-well multi-control development of fractured-vuggy reservoirs in Tahe Oilfield [J]. Petroleum Drilling Techniques,2022, 50(4):37-44. DOI: 10.11911/syztjs.2022077

塔河油田缝洞型油藏“一井多控”高效开发关键技术

基金项目: 中国石化科技攻关重点项目“塔河碳酸盐岩缝洞型油藏未动用储量评价及高效动用技术研究”(编号:P21063)资助
详细信息
    作者简介:

    何成江(1981—),男,新疆乌鲁木齐人,2005年毕业于中国地质大学(武汉)地质工程专业,2018年获西南石油大学石油与天然气工程专业硕士学位,高级工程师,主要从事油气藏开发及地质工程一体化研究。E-mail: hechengjiang.xbsj@sinopec.com。

  • 中图分类号: TE344

Key Technologies for High-Efficiency One-Well Multi-Control Development of Fractured-Vuggy Reservoirs in Tahe Oilfield

  • 摘要:

    塔河油田碳酸盐岩缝洞型油藏主要储油空间是溶洞,多轮次开发过程中溶洞的储量品质与规模不断下降,单井动用单洞的开发方式效益风险逐年增大。为此,基于地质工程一体化,研发了同时动用多套缝洞体的“一井多控”高效开发关键技术。该技术主要基于缝洞分级刻画描述技术,分级标定复杂缝洞体内部基岩与有效缝洞体的边界;针对缝洞型油藏缝洞空间展布存在的差异性,推进地质工程一体化,设计多种“串联”井眼轨道,尽可能贴近有效缝洞边界;研发适合缝洞型储层的分段改造一次动用完井技术,实现一个井眼沟通动用多个缝洞体的目标,进一步提高单井产能和单井开发效益。“一井多控”高效开发关键技术在塔河油田进行了现场试验,试验过程中对缝洞刻画、井眼轨道设计及完井技术不断迭代优化提升,支撑了“一井多控”评价井储量动用规模与产能的不断提升,储量动用规模达到直井动用储量规模的1.5倍以上,油井日产油能力提高10%以上。“一井多控”高效开发关键技术为塔河油田碳酸盐岩缝洞型油藏提供了一种新的开发方式。

    Abstract:

    The karst caves are the main oil storage space in the fractured-vuggy carbonate reservoirs in Tahe Oilfield. During multiple rounds of development, the reserve quality and scale of the karst caves keep declining, the benefit risk of the development method of single well producing single cave intensifies with each passing year. For this reason, high-efficiency development technologies of one-well multi-control that can simultaneously exploit multiple fracture-cave bodies were developed on the basis of geology-engineering integration. Specifically, the hierarchical characterization and description technology for fractures and caves was employed to hierarchically demarcate the boundaries between the internal bedrock and the effective fracture-cave bodies in the complex fracture-cave bodies. Due to the differences in the spatial distribution of the fractures and caves in fractured-vuggy reservoirs, a variety of “series” wellbore trajectories as close to the boundaries of the effective fractures and caves as possible were designed to advance geology-engineering integration. Furthermore, a completion technology featuring staged reconstruction and one-time production for fractured-vuggy reservoirs was developed so that one wellbore could connect and exploit production from multiple fracture-cave bodies to further improve the capacity and development benefit of single-well. Field tests of the one-well multi-control technologies were carried out in Tahe Oilfield. During the tests, fracture and cave characterization, trajectory design, and the completion technology were iteratively optimized, which supported the continuous improvement of the reserve production scale and productivity of the one-well multi-control evaluation wells. As a result, the reserve production scale of these wells reached more than 1.5 times that of the vertical wells, and the daily oil production capacity of the oil wells increased by over 10%. The proposed one-well multi-control technologies provide a new developing mode for the fractured-vuggy carbonate reservoirs in TaheOilfield.

  • 图  1   “一井多控”井眼轨道类型

    Figure  1.   One-well multi-control wellbore trajectory types

    图  2   核心/非核心缝洞雕刻示意

    Figure  2.   Carving of core and non-core fractures and caves

    图  3   “洞–洞”模式典型地震剖面及井眼轨道

    Figure  3.   Typical seismic profile and wellbore trajectory of “cave-cave” mode

    图  4   “洞+裂缝带”模式典型地震剖面及井眼轨道

    Figure  4.   Typical seismic profile and wellbore trajectory of “cave + fracture zone” mode

    图  5   “裂缝带内小缝洞”模式典型地震剖面及井眼轨道

    Figure  5.   Typical seismic profile and wellbore trajectory of “small fractures and caves in fracture zone” mode

  • [1] 李阳. 塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J]. 石油学报,2013,34(1):115–121. doi: 10.7623/syxb201301013

    LI Yang. The theory and method for development of carbonate fractured-cavity reservoirs in Tahe Oilfield[J]. Acta Petrolei Sinica, 2013, 34(1): 115–121. doi: 10.7623/syxb201301013

    [2] 焦方正, 翟晓先. 海相碳酸盐岩非常规大油气田: 塔河油田勘探研究与实践[M]. 北京: 石油工业出版社, 2008: 130-135.

    JIAO Fangzheng, ZHAI Xiaoxian. A unconventional large oil and gasfield of marine carbonate rock: exploration research and practice of Tahe Oilfield[M]. Beijing: Petroleum Industry Press, 2008: 130-135.

    [3] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发,2019,46(3):552–558.

    JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552–558.

    [4] 李阳,金强,钟建华,等. 塔河油田奥陶系岩溶分带及缝洞结构特征[J]. 石油学报,2016,37(3):289–298. doi: 10.7623/syxb201603001

    LI Yang, JIN Qiang, ZHONG Jianhua, et al. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe Oilfieid, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(3): 289–298. doi: 10.7623/syxb201603001

    [5] 胡文革. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J]. 油气藏评价与开发,2020,10(2):1–10. doi: 10.13809/j.cnki.cn32-1825/te.2020.02.001

    HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 1–10. doi: 10.13809/j.cnki.cn32-1825/te.2020.02.001

    [6] 李宗杰,王勤聪. 塔北超深层碳酸盐岩储层预测方法和技术[J]. 石油与天然气地质,2002,23(1):35–40. doi: 10.3321/j.issn:0253-9985.2002.01.007

    LI Zongjie, WANG Qincong. Method and technique for prediction of super-deep carbonate reservoirs in North Tarim Basin[J]. Oil & Gas Geology, 2002, 23(1): 35–40. doi: 10.3321/j.issn:0253-9985.2002.01.007

    [7] 王震,文欢,胡文革. 塔河油田碳酸盐岩缝洞空间位置预测方法研究[J]. 工程地球物理学报,2019,16(4):433–438.

    WANG Zhen, WEN Huan, HU Wenge. Study on spatial location prediction method of fractured-vuggy carbonate reservoir in Tahe Oilfield[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4): 433–438.

    [8] 黄文松,徐芳,刘成彬,等. 深水盐下湖相碳酸盐岩缝洞地震预测:以巴西桑托斯盆地F油田为例[J]. 石油与天然气地质,2022,43(2):445–455. doi: 10.11743/ogg20220216

    HUANG Wensong, XU Fang, LIU Chengbin, et al. Seismic prediction of fractures and vugs in deep-water sub-salt lacustrine carbonates: taking F oilfield in Santos Basin, Brazil as an example[J]. Oil & Gas Geology, 2022, 43(2): 445–455. doi: 10.11743/ogg20220216

    [9] 李源,鲁新便,蔡忠贤,等. 塔里木盆地塔河油田岩溶峡谷区海西早期洞穴系统发育模式[J]. 古地理学报,2017,19(2):364–372. doi: 10.7605/gdlxb.2017.02.028

    LI Yuan, LU Xinbian, CAI Zhongxian, et al. Development model of Hercynian cave system in karst canyon area of Tahe Oilfield, Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2): 364–372. doi: 10.7605/gdlxb.2017.02.028

    [10] 吕心瑞,孙建芳,邬兴威,等. 缝洞型碳酸盐岩油藏储层结构表征方法:以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质,2021,42(3):728–737. doi: 10.11743/ogg20210317

    LYU Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs: a case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 728–737. doi: 10.11743/ogg20210317

    [11] 鲁新便,何成江,邓光校,等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质,2014,36(3):268–274. doi: 10.11781/sysydz201403268

    LU Xinbian, HE Chengjiang, DENG Guangxiao, et al. Development features of karst ancient river system in Ordovician reservoirs, Tahe Oil Field[J]. Petroleum Geology and Experiment, 2014, 36(3): 268–274. doi: 10.11781/sysydz201403268

    [12] 周文,李秀华,金文辉,等. 塔河奥陶系油藏断裂对古岩溶的控制作用[J]. 岩石学报,2011,27(8):2339–2348.

    ZHOU Wen, LI Xiuhua, JIN Wenhui, et al. The control action of fault to paleokarst in view of Ordovician reservoir in Tahe Area[J]. Acta Petrologica Sinica, 2011, 27(8): 2339–2348.

    [13] 姜应兵,李兴娟. 塔里木盆地塔河油田TH12402井区中下奥陶统古岩溶洞穴发育模式[J]. 古地理学报,2021,23(4):824–836.

    JIANG Yingbing, LI Xingjuan. Development model of paleokarst caves in the Middle-Lower Ordovician of TH12402 well area in Tahe Oilfield, Tarim Basin[J]. Journal of Palaeogeography, 2021, 23(4): 824–836.

    [14] 孟庆梅,张哲. 塔河油田碳酸盐岩地层钻井问题及对策[J]. 石油钻探技术,1999,27(4):19–20. doi: 10.3969/j.issn.1001-0890.1999.04.007

    MENG Qingmei, ZHANG Zhe. Carbonate formation drilling problems and measures in Tahe Oilfield[J]. Petroleum Drilling Techniques, 1999, 27(4): 19–20. doi: 10.3969/j.issn.1001-0890.1999.04.007

    [15] 何伟国,唐明,吴柳根. 塔河油田深层侧钻水平井膨胀套管钻井完井技术[J]. 石油钻探技术,2013,41(5):62–66. doi: 10.3969/j.issn.1001-0890.2013.05.012

    HE Weiguo, TANG Ming, WU Liugen. Expandable casing drilling and completion technology in deep sidetracked horizontal wells of Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 62–66. doi: 10.3969/j.issn.1001-0890.2013.05.012

    [16] 韩忠艳,耿宇迪,赵文娜. 塔河油田缝洞型碳酸盐岩油藏水平井酸压技术[J]. 石油钻探技术,2009,37(6):94–97. doi: 10.3969/j.issn.1001-0890.2009.06.023

    HAN Zhongyan, GENG Yudi, ZHAO Wenna. Fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2009, 37(6): 94–97. doi: 10.3969/j.issn.1001-0890.2009.06.023

    [17] 房好青,赵兵,汪文智,等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术,2019,47(5):97–103. doi: 10.11911/syztjs.2019048

    FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97–103. doi: 10.11911/syztjs.2019048

    [18] 周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077

    ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077

    [19] 李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018

    [20] 张永春. 泾河油田致密低渗油藏水平井重复压裂技术[J]. 断块油气田,2021,28(5):711–715.

    ZHANG Yongchun. Horizontal well re-fracturing technology in tight and low permeability reservoir of Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 711–715.

    [21] 滕卫卫,李想. 底水火山岩油藏水平井优化设计[J]. 特种油气藏,2021,28(5):120–125. doi: 10.3969/j.issn.1006-6535.2021.05.017

    TENG Weiwei, LI Xiang. Optimal design of horizontal wells in volcanic hydrocarbon reservoir with bottom water[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 120–125. doi: 10.3969/j.issn.1006-6535.2021.05.017

    [22] 虞绍永. 基于早期返排历史数据的水平井分段压裂效果评价方法[J]. 石油钻探技术,2021,49(6):1–7. doi: 10.11911/syztjs.2021136

    YU Shaoyong. Post-frac evaluation of multi-stage fracturing on horizontal wells based on early flowback history[J]. Petroleum Drilling Techniques, 2021, 49(6): 1–7. doi: 10.11911/syztjs.2021136

    [23] 贺甲元,程洪,向红,等. 塔河油田碳酸盐岩储层暂堵转向压裂排量优化[J]. 石油钻采工艺,2021,43(2):233–238. doi: 10.13639/j.odpt.2021.02.015

    HE Jiayuan, CHENG Hong, XIANG Hong, et al. Optimizing the displacement of temporary plugging and diversion fracturing of the carbonate reservoirs in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(2): 233–238. doi: 10.13639/j.odpt.2021.02.015

    [24] 赵海洋,刘志远,唐旭海,等. 缝洞型碳酸盐岩储层循缝找洞压裂技术[J]. 石油钻采工艺,2021,43(1):89–96.

    ZHAO Haiyang, LIU Zhiyuan, TANG Xuhai, et al. Fracturing technology of searching for vugs along fractures in fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(1): 89–96.

  • 期刊类型引用(23)

    1. 车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 . 百度学术
    2. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 . 百度学术
    3. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
    4. 宋周成,翟文宝,邓昌松,徐杨,徐席明,汪鑫,文涛. 富满油田超深井井身结构优化技术与应用. 钻采工艺. 2022(06): 36-41 . 百度学术
    5. 王涛,刘锋报,罗威,晏智航,陆海瑛,郭斌. 塔里木油田防漏堵漏技术进展与发展建议. 石油钻探技术. 2021(01): 28-33 . 本站查看
    6. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
    7. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 . 百度学术
    8. 张强,饶志华,秦世利,金勇. 南海东部深层古近系高效开发技术探索与实践. 石油化工应用. 2021(06): 34-38 . 百度学术
    9. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 . 百度学术
    10. 陈冬毅,徐鲲,张作伟,吕广,张鑫,郭小明. 恒压恒扭工具在渤海油田中的应用. 科学技术创新. 2021(22): 153-154 . 百度学术
    11. 严德,张玉山,宋玲安,陈彬,李彬,刘保波. 深水高温高压井钻井技术探索与实践. 中国石油和化工标准与质量. 2021(13): 193-194 . 百度学术
    12. 张喆,闫楚旋,冯震,脱直霖,石朝龙. 塔里木油田HLHT区块优快钻井技术研究. 云南化工. 2021(10): 127-129 . 百度学术
    13. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
    14. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    15. 张智亮,王威,伊明,刘强. 井下安全监控系统设计与实现. 石油钻探技术. 2020(06): 65-70 . 本站查看
    16. 周波,汪海阁,张富成,纪国栋,韩泽龙,武强. 温度压力对岩石可钻性和破岩效率影响实验. 石油钻采工艺. 2020(05): 547-552 . 百度学术
    17. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 . 百度学术
    18. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    19. 江波,任茂,王希勇. 彭州气田PZ115井钻井提速配套技术. 探矿工程(岩土钻掘工程). 2019(08): 73-78 . 百度学术
    20. 郑振国,黎红胜,赵海艳,温慧芸,孙东方. 哥伦比亚Matambo区块深井钻井关键技术. 石油钻探技术. 2018(02): 30-37 . 本站查看
    21. 丁红,宋朝晖,袁鑫伟,邢战,张宏阜,张仪. 哈拉哈塘超深定向井钻井技术. 石油钻探技术. 2018(04): 30-35 . 本站查看
    22. 李世昌,闫立鹏,李建冰,白文路,杨秀丽,闫天宇. 自循环粒子射流钻井提速工具机理研究. 中国锰业. 2018(03): 98-102 . 百度学术
    23. 陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 . 百度学术

    其他类型引用(7)

图(5)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  116
  • PDF下载量:  46
  • 被引次数: 30
出版历程
  • 收稿日期:  2022-03-11
  • 修回日期:  2022-07-11
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回