顺北油气田防漏固井用封隔式分级箍研制与应用

路飞飞, 于洋, 王伟志, 李明军

路飞飞,于洋,王伟志,等. 顺北油气田防漏固井用封隔式分级箍研制与应用[J]. 石油钻探技术,2022, 50(4):31-36. DOI: 10.11911/syztjs.2022076
引用本文: 路飞飞,于洋,王伟志,等. 顺北油气田防漏固井用封隔式分级箍研制与应用[J]. 石油钻探技术,2022, 50(4):31-36. DOI: 10.11911/syztjs.2022076
LU Feifei, YU Yang, WANG Weizhi, et al. Development and application of a leakproof stage cementing collar with packer in the Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2022, 50(4):31-36. DOI: 10.11911/syztjs.2022076
Citation: LU Feifei, YU Yang, WANG Weizhi, et al. Development and application of a leakproof stage cementing collar with packer in the Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2022, 50(4):31-36. DOI: 10.11911/syztjs.2022076

顺北油气田防漏固井用封隔式分级箍研制与应用

基金项目: 中国石化重点科技项目群“顺北特深层断裂破碎带区块安全成井关键技术”(编号:PE19004)课题三“顺北一区易漏失地层固井技术研究与应用”部分研究内容
详细信息
    作者简介:

    路飞飞(1985—),女,山东新泰人,2008年毕业于中国石油大学(华东)石油工程专业,2011年获中国石油大学(华东)油气井工程专业硕士学位,工程师,主要从事固井水泥浆体系与固井工艺研究。E-mail: luff.xbsj@sinopec.com。

  • 中图分类号: TE925+.2

Development and Application of a Leakproof Stage Cementing Collar with Packer in the Shunbei Oil & Gas Field

  • 摘要:

    顺北油气田二叠系固井极易发生漏失,环空水泥缺失长度超过2 000 m,导致生产期间套损严重。针对该问题,研制了封隔式分级箍,并进行了室内性能评价试验和现场应用。室内性能评价试验发现,该分级箍不仅具有常规分级箍的功能,还可以在一级固井后胀封封隔器,封隔漏层,防止二级固井时发生漏失,提高环空水泥环完整性;封隔器胀封后,环空封隔能力可达20 MPa;循环孔关闭后,管内密封能力不低于套管抗内压强度。顺北油气田9口井应用了封隔式分级箍,二级固井平均漏失量由105.1 m3降至3.5 m3,环空水泥缺失长度由2 048 m缩短至350 m,节约固井成本约1 100万元。封隔式分级箍解决了长裸眼易漏失井段固井时的漏失问题,为顺北油气田的高效开发提供了技术支撑。

    Abstract:

    Permian cementing was leakprone in the Shunbei Oil & Gas Field, and the loss of annular cement surpassed 2 000 m, which led to severe casing damage in the production period. To solve this problem, a stage cementing collar with packer was developed, performance evaluated in the laboratory, and applied in fields. The tool works well not only with the conventional function of the stage cementing collar, it can also expand the packer upon the first-stage cementing to seal the layers and prevent the leakage of the second-stage cementing and thus improve the integrity of annular cement sheaths. After the expansion, the annular sealing capacity of the tool could reach 20 MPa, and when the circulation holes were closed, the internal sealing capacity should not be lower than the internal pressure strength of the casing. The developed tool was applied in nine wells of the Shunbei Oil & Gas Field. The results revealed that the average leakage of the second-stage cementing was reduced from 105.1 m3 to 3.5 m3, and the missing length of annular cement declined from 2 048 m to 350 m, saving about 11.0 million yuan in cementing. The stage cementing collar with packer could solve the leakage problem in the cementing of the leakprone well sections which tend to leak in long open holes. The lessons learned in this study provide technical support for the efficient development of the Shunbei Oil & Gas Field.

  • ITT区块是厄瓜多尔最大的产油区块,位于该国东部亚马逊热带雨林腹地Oriente盆地的东南部,毗邻秘鲁边界。ITT区块已探明石油地质储量约8.5×108 t,可采石油储量达到2.2×108 t,占该国已探明石油储量的41%。ITT区块由Ishpingo、Tiputini和Tambococha等3个油田组成,其中Tambococha油田位于亚苏尼国家自然保护区内,井场周围遍布河流及热带雨林,钻井环保要求苛刻,区域地质沉积属于海相环境沉积,主要地层为古近系–新近系和白垩系。白垩系是其开发的主要目的层,自下而上由Hollin组、Napo组 和 Tena组组成,地层松散破碎,微孔裂缝发育,井壁垮塌和储层保护问题突出。

    Tambococha油田勘探开发前期,普遍使用无机盐聚合物钻井液或ULTRADRIL强抑制性水基钻井液,但未从根本上解决该油田井眼易失稳和储层伤害问题[1-2]。为此,笔者开展了钻井液技术分析和室内试验,利用聚合醇浊点效应和环境友好的特点,复配乳化石蜡和其他刚性粒子,研制了强封堵储层保护钻井液,并在现场应用中取得良好效果,满足了Tambococha油田水平井安全钻井及储层保护技术要求。

    Tambococha油田水平井下部井段钻遇的Hollin组、Napo组和Tena组以页岩为主,灰岩和砂岩交替发育,并夹杂大段绿色砾石层,且微裂缝发育,地层比较复杂,钻井中经常发生井下故障。分析认为,该油田主要存在以下钻井液技术难点:

    1)井眼失稳问题。Tambococha油田下部地层中的泥页岩由伊利石和伊/蒙混层组成,蒙脱石较少,内部微孔微裂缝较多,且产层砂岩孔隙度大,渗透性强,井壁上容易堆积较厚滤饼;加之水平井设计成了大尺寸井眼、长裸眼段,更加剧了地层的不稳定性。其中,水平段所钻遇地层灰岩和砂岩交替发育,地层松散破碎且微裂缝发育,微裂缝中含有极少量的膨胀性黏土矿物,在钻井液滤液侵入后,由于渗透水化作用,进一步破坏了地层原始应力的稳定性,进而引发井壁垮塌等井眼失稳问题。

    2)储层损害问题。Tambococha油田储层Napo组地层胶结疏松、成岩性差,具有高孔隙度、高渗透率、孔喉普遍发育和地层压力低等特点。Napo组孔隙度为15%~23%,渗透率为600~1 000 mD。由于储层孔喉尺寸分布范围广,孔喉半径大,且通常采用过平衡钻井方式,在正压差作用下,钻井液中的固相和滤液很容易侵入地层,造成严重的储层损害问题。

    3)钻井环保问题。Tambococha油田处于亚苏尼热带雨林国家自然保护区内,生态环境极其敏感,该油田勘探开发产生的环境问题得到当地社区和政府的高度关注。为保护生态环境,厄瓜多尔政府颁布的最新石油法中明确规定,钻井废弃物处理后必须达到美国EPA1311环保标准要求。因此,对钻井液环保性能提出了较高的要求。

    针对上述钻井液技术难点,在优选环保处理剂的前提下,提出了构建Tambococha油田水平井钻井液的思路:1)利用钻井液物理–化学协同封堵来强化井壁,同时辅助一定的固相封堵架桥材料及聚合物降滤失剂,实现对泥页岩微裂缝和微孔隙的封堵,并抑制黏土矿物水化膨胀分散,以防止井眼失稳;2)针对该油田储层高孔渗、低压力的特点,以屏蔽暂堵颗粒合理级配、微乳液封堵,实现孔喉暂堵,降低储层伤害[3-15];3)优选出具有浊点效应的聚合醇处理剂和可变形粒子的乳化石蜡处理剂,进行复配试验,再辅助其他环保钻井液处理剂,形成强封堵储层保护水基钻井液配方。

    利用聚合醇类处理剂的浊点效应、吸附作用和表面渗透性等实现页岩抑制、封堵、防塌的目的。为此,选取了液体聚合醇XCS-Ⅲ、聚丙二醇400、固体聚合醇PGCS-1和聚乙二醇6000作为防塌封堵剂,并通过页岩膨胀试验评价了抑制性能。页岩在几种聚合醇溶液中的线性膨胀量测试结果见表1

    表  1  页岩在不同聚合醇溶液中的线性膨胀量
    Table  1.  Linear expansion of shale in different polyalcohol solutions
    序号样品加量, %线性膨胀量/(mm·h–1
    20 min1 h2 h4 h8 h
    1清水0.701.031.431.932.55
    2PGSC-130.480.781.051.421.83
    3XCS-Ⅲ30.300.550.781.121.53
    4聚丙二醇40030.550.801.351.802.35
    5聚乙二醇600030.500.851.171.632.16
    下载: 导出CSV 
    | 显示表格

    表1可知,几种聚合醇溶液的抑制性能由强到弱依次为XCS-Ⅲ,PGSC-1,聚乙二醇6000和聚丙二醇400。因此,选取聚合醇XCS-Ⅲ作为强封堵储层保护水基钻井液的防塌封堵剂。

    另外,乳化石蜡G325具有较低的粒子软化温度,可为钻井液提供与地层温度相适应的、粒径与被封堵微裂缝尺寸相匹配的、可变形的软化粒子,从而实现对各类微裂缝的有效封堵,达到保持井眼稳定的目的。因此,选取乳化石蜡G325与聚合醇XCS-Ⅲ复配,进行正交回收率试验。结果表明,乳化石蜡G325有助于进一步提高岩屑的热滚回收率,二次回收率达到85%以上,两者协同效应显著且复配性能稳定。因此,将聚合醇XCS-Ⅲ与石蜡G325复配来配制强封堵储层保护水基钻井液。

    选取目前几种降滤失效果较好的聚合物降滤失剂和封堵型降滤失剂(磺化沥青、白沥青、低黏聚阴离子纤维素PAC-LV、天然高分子降滤失剂和羟丙基淀粉等)进行了常温中压滤失试验。结果表明,这几种降滤失剂均能使4%膨润土浆的滤失量降低,其中PAC-LV的降滤失效果最好。因此,以PAC-LV为配制强封堵储层保护水基钻井液的主降滤失剂,并以白沥青为辅降滤失剂。

    水平井水平段钻进过程中,钻井液的润滑减阻性能非常重要。为此,分别选取DFL-1、GHR-1、MudLube和JN302等4种油基润滑剂进行了润滑性能评价试验。试验步骤及结果:1)利用极压润滑仪,测试4%膨润土浆加入上述4种润滑剂前后的润滑系数,分析测试结果发现,润滑效果由好到差依次为MudLube,DFL-1,GHR-1和JN302;2)借助DA-II动态模拟润滑仪,测试了上述4种润滑剂在不同侧向力条件下的摩擦系数,观察了MudLube在不同侧向力下的润滑性能,发现随着MudLube加量增大,不同侧向力下的摩擦系数和扭矩逐渐降低,体系表现出良好的润滑效果,当MudLube的加量超过2%时,摩擦系数和扭矩均趋于稳定。因此,选择MudLube作为强封堵储层保护水基钻井液的主要润滑剂。

    通过以上试验,确定了XCS-Ⅲ+G325的防塌封堵钻井液主体配方,结合筛选的润滑剂、降滤失剂,再辅以其他环保处理剂,确定强封堵储层保护水基钻井液(以下记为AKUA钻井液)的基本配方为:0.5%~1.5% XCS-Ⅲ + 1.0%~3.0% G325 + 0.2%~0.3% XC + 0.1%~0.3% PAV-HV + 0.5%~1.5% PAC-LV + 1.0%~3.0% 白沥青+ 1.0%~3.0% MudLube。用石灰石加重,使钻井液密度在1.05~1.25 kg/L,用碱度调节剂调节其pH值至8~9。AKUA钻井液基本配方的基本性能如表2所示。

    表  2  AKUA钻井液的基本性能
    Table  2.  Basic properties of AKUA drilling fluid
    测定条件漏斗黏度/sAPI滤失量/mL塑性黏度/(mPa·s)动切力/Pa静切力/Pa
    初切终切
    常温45~705~715~2510~252~44~10
    100 ℃/16 h35~553~510~207~181~32~8
     注:钻井液密度为1.05~1.25 kg/L。
    下载: 导出CSV 
    | 显示表格

    根据厄瓜多尔Tambococha油田水平井钻遇的下部地层地质特点,通过室内试验评价AKUA钻井液的抑制性能、封堵性能、储层保护及环保性能,以确定该钻井液的性能是否满足要求。

    利用OFI膨胀量测试仪,在室温下测试了页岩在几种钻井液滤液中的线性膨胀量,结果见图1。由图1可知,页岩在AKUA钻井液中的线性膨胀量最小,与其在清水中的线性膨胀量相比,降低了64.8%,表明该钻井液具有良好的抑制页岩膨胀的性能。

    图  1  页岩在几种钻井液中的线性膨胀量
    Figure  1.  Linear expansion of shale in several drilling fluids

    Tambococha油田主力油层Napo组的U层和T层属于高孔高渗低压储层,渗透率600~1 000 mD,孔隙度18%~20%,利用理想充填原理计算出其平均孔隙直径为42 μm。用碳酸钙屏蔽暂堵储层,由理想充填模型计算得知,在渗透率为800 mD、孔隙度为20%时,最大孔喉直径为41 μm ,即碳酸钙粒径分布为D90=41.3 μm、D50=12.5 μm、D10=0.5 μm,就能实现孔隙封堵。100目石灰石和325目石灰石按3∶1复配,计算出其加量为10%时的粒径分布曲线与理想充填曲线拟合地较好,能实现有效封堵(如图2所示)。

    图  2  封堵材料架桥模拟计算结果
    Figure  2.  Bridging simulation results of plugging materials

    选取Tambococha油田主力储层Napo组U层的3块岩心,利用岩心动态伤害系统进行了伤害评价试验。试验步骤:1)测试岩心渗透率;2)对岩心进行污染,以形成暂堵带,以6 mL/min的流量,将AKUA基浆驱入岩心,当岩心进口压力达到3.5 MPa时,保持此压力,直至出口端基本没有液体流出,此时污染完成;3)用煤油对岩心进行反向驱替,待煤油开始突破暂堵带时,记录下此时的压力(突破压力)及反排压力,并记录反向流动试验时间。试验结果见表3

    表  3  岩心反排试验结果
    Table  3.  Test results of core flowback
    岩心编号原始渗透率/mD反向渗透率/mD突破压力/MPa反排压力/MPa岩心伤害率,%反排时间/min
    1#735.58643.720.150.1712.49 30
    2#793.33720.230.140.159.2130
    3#814.86741.020.110.129.0630
    下载: 导出CSV 
    | 显示表格

    表3可知,在模拟地层条件下,AKUA钻井液对岩心的伤害率平均只有10.25%,表明AKUA钻井液具有良好的降低油层损害的性能。

    目前,国内外普遍使用水质五日生化需氧量与水质化学需氧量之比(BOD5/COD),来考察有机物的生物可降解性。评价试验参照标准“水质:化学需氧量的测定:重铬酸盐法”(HJ 828—2017)和“水质:五日生化需氧量(BOD5)的测定:稀释与接种法”( HJ 505—2009)进行。参考石油天然气行业标准“水溶性油田化学剂环境保护技术评价方法”(SY/T 6788—2010)和“水溶性油田化学剂环境保护技术要求”(SY/T 6787—2010),用BOD5/COD评价生物可降解性,标准为:Y=BOD5/COD,Y≥0.05,易;0.01≤Y<0.05,较难;Y<0.01,难。使用哈希COD max plus sc型分析仪和哈希BOD Trak II型分析仪测定AKUA钻井液的COD和BOD5,AKUA钻井液的BOD5/COD为0.440,表明其易生物降解。

    采用发光细菌法,通过显微毒性试验评价钻井液的环保性能。该方法是加拿大测试海上钻井液生物毒性的标准方法之一。采用石油天然气行业标准“水溶性油田化学剂环境保护技术评价方法”(SY/T 6788—2010)中的EC50评价钻井液的生物毒性:EC50<1,剧毒;1<EC50<1 000,中毒;1 001<EC50<20 000,微毒;EC50>20 000,无毒。AKUA钻井液的EC50为51 200,表明其无毒。

    研制的强封堵储层保护水基钻井液(AKUA钻井液)在厄瓜多尔Tambococha油田15口水平井进行了应用,均取得成功,钻井过程中井壁稳定、起下钻顺畅、套管均一次下到底,且钻屑环保指标能够达到美国EPA1311环保标准,可直接回注到地层。应用该钻井液,有效解决了Tambococha油田水平井钻速慢、易发生井下故障的问题,并多次打破该油田水平井钻井纪录,有效推进了Tambococha油田钻井提速提效。

    分析表明,AKUA钻井液主要应用效果为:

    1)井壁防塌效果明显。优选了适合地层孔隙尺寸的粒径级配封堵剂,然后与聚合醇进行复配,实现了井壁微裂缝封堵和抑制页岩膨胀分散,降低了井壁压力传递,使井径规则、井眼稳定、起下钻顺畅,下套管一次到底。进入水平段的砂岩地层后,AKUA钻井液密度控制在1.05~1.06 kg/L,起到了良好的井壁稳定能力。

    2)润滑减阻性能优良。AKUA钻井液选用的主要处理剂聚合醇和乳化石蜡均具有良好的润滑作用,再配合高效润滑剂MudLube,使该钻井液的润滑性能更好,有效降低了摩阻。滑动钻进井段均未出现托压,起下钻畅通无阻。

    3)储层保护效果显著。Tambococha油田水平井采用裸眼完井方式,用完井盐水顶替钻井液后下筛管直接投产,未采取任何储层改造措施。投产数据显示,应用AKUA钻井液的水平井均属于高产井,平均单井日产原油超过300 t,较邻井产量提高近90%,充分说明AKUA钻井液具有优良的储层保护特性,很大程度上降低了井筒中流体和固相颗粒对储层的污染损害。

    4)环保检测达标。Tambococha油田产生的钻井废液及钻屑必须在指定的地点进行填埋,或直接回注到地层。考虑其外运成本高、周期长和环保风险大等因素,现场一般采用钻屑回注工艺,将钻井废液及钻屑直接回注到Napo组T层(垂深1 645.60~1 705.70 m)的砂岩地层。回注之前,当地环保部门聘请第三方检测机构对现场钻井废液和钻屑进行了取样检测。检测结果表明,应用AKUA 钻井液井产生的钻井废液和钻屑符合厄瓜多尔当地石油法规定的钻井废弃物排放环保标准,可直接回注到地层。现场钻井废液、钻屑的检验结果分别见表4表5

    表  4  现场钻井废液检验结果
    Table  4.  Test results of well site waste drilling fluids
    参数pH值电导率/(μS·cm–1固体悬浮物含量/(mg·L–1化学需氧量/(mg·L–1总烃/(mg·L–1重金属含量/(mg·L–1
    总铬
    排放标准5.0~9.0<2 500<1 700<120<20<5.0<0.5<1.0<0.5
    检测结果8.4295527.5813.880.060.30.150.40.1
    下载: 导出CSV 
    | 显示表格
    表  5  现场钻屑检验结果
    Table  5.  Test results of well site drilling cuttings
    参数pH值电导率/(μS·cm–1总烃/(mg·L–1重金属含量/(mg·L–1
    总铬
    排放标准6.0~9.0<4 000<1.0<0.05<1.0<0.2<5.0
    检测结果7.42 3500.8<0.000 50.001 70.009 20.4
    下载: 导出CSV 
    | 显示表格

    1)针对厄瓜多尔Tambococha油田下部地层水平井井眼失稳、储层损害及钻井存在的环保问题,利用乳化液滴、浊点效应、微米颗粒及刚性粒子等的协同封堵作用,以阻止液相和固相侵入地层,研制了一种强封堵储层保护钻井液(AKUA钻井液)。

    2)AKUA钻井液性能稳定、环保性能突出,且现场维护简便,不仅可满足地质、钻井需求,还能满足热带雨林环境敏感区域的钻井环保要求,可实现经济和环保的双重效益。

    3)AKUA钻井液在现场应用中取得了很好的效果,主要表现为井眼稳定、起下钻顺畅。应用后平均单井日产原油超过300 t,较邻井提高产量近90%,为Tambococha油田钻井提速和规模上产提供了有力的技术支撑。

    4)建议继续研发新型钻井液处理剂,优化AKUA钻井液配方,提高该钻井液的综合性能,然后在厄瓜多尔ITT区块水平井长水平段全面推广应用。

  • 图  1   固井防漏示意

    Figure  1.   Anti-leakage in cementing

    图  2   封隔式分级箍结构

    1.关闭塞座;2.分级箍本体;3.关闭套;4.循环孔;5.打开塞座;6.注液通道;7.开启阀;8.单向阀;9.关闭阀;10.基管;11.胶筒;12.封隔器单元;13.连接阀单元;14.分级箍单元

    Figure  2.   Stage cementing collar with packer

    图  3   整机密封压力试验结果

    Figure  3.   Results of sealing pressure test for the whole machine

    图  4   封隔器胀封压力试验结果

    Figure  4.   Pressure test results of packer expansion

    图  5   封隔器环空封隔压力试验结果

    Figure  5.   Annular sealing pressure test results of packer

    图  6   分级箍循环孔打开压力试验结果

    Figure  6.   Opening pressure test results of circulation holes of stage cementing collar

    图  7   分级箍管内密封压力试验结果

    Figure  7.   Internal sealing pressure test results of stage cementing collar

    表  1   不同规格封隔式分级箍主要性能参数

    Table  1   Main performance parameters for stage cementing collar with packer of different specifications

    套管直径/
    mm
    整机密封
    能力/MPa
    封隔器注液
    打开压力/MPa
    封隔器注液
    关闭压力/MPa
    循环孔打开
    压力/MPa
    循环孔关闭
    压力/MPa
    环空封隔
    能力/MPa
    管内密封
    能力/MPa
    胶筒长度/
    mm
    本体最大
    外径/mm
    本体内径/
    mm
    177.8357.0±0.513.0±0.515.0±0.55.0±0.520801200210156
    193.7357.0±0.513.0±0.515.0±0.55.0±0.520751200230168
    244.5357.0±0.511.0±0.514.0±0.55.0±0.535651200290220
    273.1357.0±0.511.0±0.514.0±0.55.0±0.535501200312244
    下载: 导出CSV

    表  2   封隔式分级箍在顺北油气田的应用情况统计

    Table  2   Application of stage cementing collar with packer in the Shunbei Oil & Gas Field

    年份井号二叠系井段/m套管直径/mm封隔式分级箍位置/m一级固井漏失量/m3二级固井漏失量/m3水泥环缺失长度/m
    2021SHBX-2YH3 702~4 261273.13 644.90366.50265
    2021顺北Z4X3 886~4 384193.73 651.40 00710
    2021SHBX-8H4 370~5 034273.14 356.10474.00305
    2021顺北EY2X3 458~4 030193.73 400.00374.5 23.3700
    2022SHBF-O9H4 592~5 154244.53 685.70280.00390
    2022SHBZ-O2H3 644~4 162273.13 381.20437.90370
    2022SHBE-X3H3 415~3 983273.13 008.70399.20100
    2022顺北E10X3 264~3 812273.13 013.30395.00 0
    2022顺北T1X4 104~4 711273.14 078.80265.1 6.9140
    下载: 导出CSV
  • [1] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17. doi: 10.11698/PED.2022.01.01

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17. doi: 10.11698/PED.2022.01.01

    [2] 王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28–33.

    WANG Tao, LIU Fengbao, LUO Wei, et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28–33.

    [3] 郑双进,程霖,谢仁军,等. 水泥返高对深水高温高压井井口抬升高度的影响[J]. 石油钻采工艺,2021,43(5):601–606. doi: 10.13639/j.odpt.2021.05.007

    ZHENG Shuangjin, CHENG Lin, XIE Renjun, et al. Influence of cement top on wellhead uplift height of deepwater high temperature and high pressure well[J]. Oil Drilling & Production Technology, 2021, 43(5): 601–606. doi: 10.13639/j.odpt.2021.05.007

    [4] 李宗锟. 稠油热采井套管损坏机理及套管挂片技术实验[J]. 特种油气藏,2021,28(2):171–174. doi: 10.3969/j.issn.1006-6535.2021.02.026

    LI Zongkun. Damage mechanism of casing for thermal recovery of heavy oil well and casing coupon technology experiment[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 171–174. doi: 10.3969/j.issn.1006-6535.2021.02.026

    [5] 刘学鹏. 温敏堵漏水泥浆体系研究与应用[J]. 钻探工程,2022,49(2):110–116.

    LIU Xuepeng. Research and application of the temperature sensitive plugging cement slurry system[J]. Drilling Engineering, 2022, 49(2): 110–116.

    [6] 刘鑫,张小建,郭文猛,等. 塔里木山前中完防漏固井技术的研究[J]. 非常规油气,2020,7(6):90–94. doi: 10.3969/j.issn.2095-8471.2020.06.014

    LIU Xin, ZHANG Xiaojian, GUO Wenmeng, et al. The research of the leaky cementing technology of the Tarim mountains[J]. Unconventional Oil & Gas, 2020, 7(6): 90–94. doi: 10.3969/j.issn.2095-8471.2020.06.014

    [7] 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术[J]. 石油钻探技术,2021,49(1):67–73. doi: 10.11911/syztjs.2020071

    WU Bozhi, ZHANG Huaibing. Cementing technology of a self-healing cement slurry in the carbonate formations in the Well Manshen 1[J]. Petroleum Drilling Techniques, 2021, 49(1): 67–73. doi: 10.11911/syztjs.2020071

    [8] 李早元,祁凌,刘锐,等. 空心微珠低密度水泥环完整性试验研究[J]. 石油钻探技术,2017,45(3):42–47.

    LI Zaoyuan, QI Ling, LIU Rui, et al. Experimental study on the integrity of low-density cement sheath with hollow microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42–47.

    [9] 李万东. 厄瓜多尔Parahuacu油田固井技术[J]. 石油钻探技术,2021,49(1):74–80. doi: 10.11911/syztjs.2020109

    LI Wandong. Cementing technology applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74–80. doi: 10.11911/syztjs.2020109

    [10] 胡旭光,何世明,彭晓刚,等. 双级固井技术在塔里木哈拉哈塘区块的应用[J]. 天然气勘探与开发,2014,37(4):69–72. doi: 10.3969/j.issn.1673-3177.2014.04.015

    HU Xuguang, HE Shiming, PENG Xiaogang, et al. Application of two-stage cementing technology to Halahatang Block, Tarim Basin[J]. Natural Gas Exploration and Development, 2014, 37(4): 69–72. doi: 10.3969/j.issn.1673-3177.2014.04.015

    [11] 杨洁,董波,郑义,等. 川西气田二开长裸眼固井质量保障工艺[J]. 石油地质与工程,2021,35(6):81–85. doi: 10.3969/j.issn.1673-8217.2021.06.016

    YANG Jie, DONG Bo, ZHENG Yi, et al. Cementing quality assurance technology of long open hole in the second spud of Western Sichuan Gas Field[J]. Petroleum Geology and Engineering, 2021, 35(6): 81–85. doi: 10.3969/j.issn.1673-8217.2021.06.016

    [12] 沈欣宇,胡锡辉,杨博仲,等. 近平衡压力固井技术在超深易漏失井的应用:以五探1井ϕ168.3mm尾管固井为例[J]. 石油钻采工艺,2020,42(1):35–39. doi: 10.13639/j.odpt.2020.01.006

    SHEN Xinyu, HU Xihui, YANG Bozhong, et al. Application of the near equilibrium pressure cementing technique in ultra deep leakage wells: a case study on the ϕ168.3 mm liner cementing of Well Wutan 1[J]. Oil Drilling & Production Technology, 2020, 42(1): 35–39. doi: 10.13639/j.odpt.2020.01.006

    [13] 肖京男,刘建,桑来玉,等. 充气泡沫水泥浆固井技术在焦页9井的应用[J]. 断块油气田,2016,23(6):835–837. doi: 10.6056/dkyqt201606031

    XIAO Jingnan, LIU Jian, SANG Laiyu, et al. Application of foamed cement slurry to Jiaoye-9 Well[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 835–837. doi: 10.6056/dkyqt201606031

    [14] 陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38. doi: 10.11911/syztjs.2018049

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38. doi: 10.11911/syztjs.2018049

    [15] 万向臣,王鹏,孙永刚. 长庆神木区块天然气井一次上返固井技术[J]. 复杂油气藏,2016,9(4):68–71. doi: 10.16181/j.cnki.fzyqc.2016.04.015

    WAN Xiangchen, WANG Peng, SUN Yonggang. One-time up-return cementing technology for natural gas wells in Shenmu Block of Changqing Oilfield[J]. Complex Hydrocarbon Reservoirs, 2016, 9(4): 68–71. doi: 10.16181/j.cnki.fzyqc.2016.04.015

    [16] 杨红歧,孙连环,敖竹青,等. 顺北油气田一区超深井三开长封固段固井技术[J]. 石油钻探技术,2020,48(6):33–39. doi: 10.11911/syztjs.2020110

    YANG Hongqi, SUN Lianhuan, AO Zhuqing, et al. Anti-leakage cementing technology for the long well section below technical casing of ultra-deep wells in the No. 1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33–39. doi: 10.11911/syztjs.2020110

    [17] 潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液,2018,35(3):42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the Permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    [18] 吴天乾,李明忠,李德红,等. 固井前地层漏失压力动态测试方法[J]. 石油钻采工艺,2019,41(3):283–287. doi: 10.13639/j.odpt.2019.03.004

    WU Tianqian, LI Mingzhong, LI Dehong, et al. A dynamic test method for the formation leakage pressure before cementing[J]. Oil Drilling & Production Technology, 2019, 41(3): 283–287. doi: 10.13639/j.odpt.2019.03.004

    [19] 王建全. 双级固井中双级箍存在的问题分析及对策[J]. 石油机械,2015,43(6):27–31. doi: 10.16082/j.cnki.issn.1001-4578.2015.06.007

    WANG Jianquan. Issues and solutions of two-stage collar during two-stage cementing[J]. China Petroleum Machinery, 2015, 43(6): 27–31. doi: 10.16082/j.cnki.issn.1001-4578.2015.06.007

    [20] 刘明,李振,白园园,等. 封隔式分级注水泥器关键技术分析[J]. 石油矿场机械,2019,48(5):5–9. doi: 10.3969/j.issn.1001-3482.2019.05.002

    LIU Ming, LI Zhen, BAI Yuanyuan, et al. Key techniques of stage cementing collar with packer[J]. Oil Field Equipment, 2019, 48(5): 5–9. doi: 10.3969/j.issn.1001-3482.2019.05.002

    [21] 朱玉杰,秦金立,冯丽莹. 水平井完井用可捞式分级注水泥器[J]. 断块油气田,2018,25(6):807–810.

    ZHU Yujie, QIN Jinli, FENG Liying. Technology of plug-retrievable stage collar in horizontal well completion[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 807–810.

    [22] 杜鹏德,孙泽秋. 筛管顶注双级箍防提前打开装置的研制与应用[J]. 石油机械,2019,47(6):38–43. doi: 10.16082/j.cnki.issn.1001-4578.2019.06.008

    DU Pengde, SUN Zeqiu. Double-stage collar anti-premature opening device for cementing the top of screen tube[J]. China Petroleum Machinery, 2019, 47(6): 38–43. doi: 10.16082/j.cnki.issn.1001-4578.2019.06.008

    [23] 贾晓斌, 易浩, 罗发强, 等. 一种具有封隔功能的分级注水泥器: CN201821019060.8[P]. 2019-01-08.

    JIA Xiaobin, YI Hao, LUO Faqiang, et al. A two-stage cementing device with sealing function: CN201821019060.8[P]. 2019-01-08.

  • 期刊类型引用(4)

    1. 曾皓,金衍,王海波. 宁东油田致密油储层损害机理与对策. 石油钻探技术. 2024(01): 62-68 . 本站查看
    2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    3. 厉明伟,周建民,秦涛,王志,王伟,邱春阳. 聚胺复合盐润滑防塌钻井液在孤东斜288井的应用. 兰州石化职业技术大学学报. 2024(03): 13-16 . 百度学术
    4. 唐凯,潘宇强,沈明华. 防水窜水泥浆体系的研究与应用. 钻采工艺. 2023(02): 27-34 . 百度学术

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  154
  • PDF下载量:  57
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-06-30
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-07-24

目录

/

返回文章
返回