顺北油气田超深高温水平井井眼轨迹控制技术

李文霞, 王居贺, 王治国, 杨卫星, 史玉才

李文霞,王居贺,王治国,等. 顺北油气田超深高温水平井井眼轨迹控制技术[J]. 石油钻探技术,2022, 50(4):18-24. DOI: 10.11911/syztjs.2022073
引用本文: 李文霞,王居贺,王治国,等. 顺北油气田超深高温水平井井眼轨迹控制技术[J]. 石油钻探技术,2022, 50(4):18-24. DOI: 10.11911/syztjs.2022073
LI Wenxia, WANG Juhe, WANG Zhiguo, et al. Wellbore trajectory control technologies for ultra-deep and high-temperature horizontal wells in the Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2022, 50(4):18-24. DOI: 10.11911/syztjs.2022073
Citation: LI Wenxia, WANG Juhe, WANG Zhiguo, et al. Wellbore trajectory control technologies for ultra-deep and high-temperature horizontal wells in the Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2022, 50(4):18-24. DOI: 10.11911/syztjs.2022073

顺北油气田超深高温水平井井眼轨迹控制技术

基金项目: 中国石化科技攻关项目群“顺北特深层断裂破碎带区块安全成井关键技术”(编号:PE19004)和中国石化科技攻关项目“顺北一区5号断裂带提质提速钻完井技术研究”(编号:PE20002)部分研究内容
详细信息
    作者简介:

    李文霞(1989—),女,2011年毕业于中国石油大学(华东)石油工程专业,工程师,主要从事钻井工程技术方面的研究工作。E-mail: liwenx.xbsj@sinopec.com

  • 中图分类号: TE243+.1

Wellbore Trajectory Control Technologies for Ultra-Deep and High-Temperature Horizontal Wells in the Shunbei Oil & Gas Field

  • 摘要:

    顺北油气田储层埋藏深、井底温度和压力高,导致MWD仪器故障率高,超深高温水平井下部高温井段有时无MWD仪器可用,井眼轨迹控制难度较大。为了降低该油气田超深高温水平井轨迹控制难度并提高钻井效率,对水平井井眼轨道设计与井眼轨迹控制进行一体化规划,将顺北油气田超深高温水平井井眼轨道设计成造斜率“前高后低”的多圆弧轨道,优化钻具组合和钻进参数;对于下部无MWD仪器可用的高温井段,采用单弯单稳定器螺杆钻具组合进行复合钻进,以控制井眼轨迹。研究和应用结果表明,采用单弯单稳定器螺杆钻具组合进行复合钻进,根据复合钻进井斜角变化率预测结果优化钻具组合和钻进参数,可以解决顺北油气田超深高温水平井下部高温井段无法应用MWD控制井眼轨迹的问题,降低井眼轨迹控制难度,提高钻井效率。

    Abstract:

    The failure rate of Measure While Drilling (MWD) instruments is high in the Shunbei Oil&Gas Field due to deep buried reservoir and high bottom-hole temperature and pressure. The MWD instruments are often not available in high temperature section of horizontal wells and the wellbore trajectory is difficult to control. In order to reduce the difficulty of wellbore trajectory control and improve the drilling efficiency of ultra-deep and high-temperature horizontal wells in the Shunbei Oil&Gas Field, this study integrated wellbore trajectory design and control technology. The wellbore trajectory was designed as multiple circular arcs with higher build-up rates in upper section and lower build-up rates in lower section to optimize the bottom hole assembly (BHA) and drilling parameters. A Positive Displacement Motor (PDM) with single bend and stabilizer was applied for compound drilling and controlling the wellbore trajectory when no MWD instrument was available in the lower high-temperature section. The research and field applications demonstrated that adopting the above compound drilling and optimizing BHA and drilling parameters according to the predicted well inclination variation rates, the inability to apply MWD for wellbore trajectory control can be solved. And in this way, the difficulties in wellbore trajectory control was lowered, and the drilling efficiency is highly improved.

  • 图  1   钻进趋势角示意

    Figure  1.   Drilling trending angle

    图  2   螺杆弯角对井斜角变化率的影响

    Figure  2.   The effect of PDM bent angle on well inclination variation rates

    图  3   螺杆稳定器直径对井斜角变化率的影响

    Figure  3.   The effect of PDM stabilizer diameter on well inclination variation rates

    图  4   钻压对井斜角变化率的影响

    Figure  4.   The effect of weight on bit (WOB) on well inclination variation rates

    图  5   复合钻进效果分析

    Figure  5.   Well inclination variation rates of compound drilling at different depths

    表  1   SHB16X井侧钻井眼轨道设计结果

    Table  1   Well SHB16X sidetrack wellbore trajectory design

    井深/m垂深/m井斜角/(°)方位角/(°)闭合距/m井眼曲率/((°)·(30m)−1靶点
    6 375.006 343.9732.71323.1103.630
    6 393.136 359.4031.00340.0112.7515.00
    6 433.616 390.8947.000.13133.9515.00
    6 979.796 612.0784.310.13600.462.05
    7 009.426 615.0084.310.13629.680A
    7 111.106 625.0784.310.13730.120B
    下载: 导出CSV

    表  2   SHB16X井侧钻8趟钻钻进情况

    Table  2   Summary of 8 runs of sidetracking in Well SHB16X

    趟次井段/m钻压/kN井斜角变化井眼曲率/((°)·(30m)−1机械钻速/(m·h−1起钻原因
    16 374~6 4233032.65°↗47.52°20.001.33定向结束,起钻更换稳斜钻具
    26 423~6 4623047.52°↗52.87°4.124.08MWD仪器无信号
    6 462~6 4842052.87°↗55.17°3.143.62
    36 484~6 5153055.17°↗55.88°0.693.29MWD仪器无信号
    6 515~6 5445055.88°↗56.42°0.565.27
    6 544~6 5836056.42°↗59.05°2.025.02
    6 583~6 6505059.05°↗60.66°0.724.69
    46 650~6 654502.82MWD仪器无信号
    56 654~6 695505.52MWD仪器无信号
    66 695~6 79550~6061.55°↗63.16°0.484.49多点测斜仪测量
    76 795~6 89540~5063.16°↗70.55°2.222.52多点测斜仪测量
    86 895~7 06040~070.55°↗81.50°1.992.19钻遇硅质地层,多点测斜仪测量后起钻
    注:第1趟钻钻具组合为ϕ149.2 mm混合钻头+ϕ120.7 mm弯螺杆(弯角2°、ϕ143.0 mm稳定器)+ϕ120.7 mm无磁钻铤+MWD;第2趟钻钻具组合为ϕ149.2 mm PDC钻头+ϕ120.7 mm弯螺杆(弯角1.25°、ϕ146.0 mm稳定器)+ϕ120.7 mm短钻铤+单流阀+ϕ145.0 mm稳定器+ϕ120.7 mm无磁钻铤+MWD;第3—5趟钻钻具组合为ϕ149.2 mm PDC钻头+ϕ120.7 mm弯螺杆(弯角1.25°、ϕ143.0 mm稳定器)+单流阀+ϕ145.0 mm稳定器+ϕ120.7 mm无磁钻铤+MWD;第6趟钻钻具组合为ϕ149.2 mm PDC钻头+ϕ120.7 mm弯螺杆(弯角1.5°)+单流阀+ϕ120.7 mm无磁钻铤+MWD;第7趟钻钻具组合为ϕ149.2 mm PDC钻头+ϕ120.7 mm弯螺杆(弯角1.25°、ϕ145.0 mm直条稳定器)+单流阀+ϕ120.7 mm无磁钻铤;第8趟钻钻具组合为ϕ149.2 mm PDC钻头+ϕ120.7 mm弯螺杆(弯角1.5°、ϕ145.0 mm直条稳定器)+单流阀+ϕ120.7 mm无磁钻铤。
    下载: 导出CSV
  • [1] 中国石化新闻网. 亚洲最深油气田建成百万吨产能[EB/OL]. (2021-01-25)[2022-03-05]. http://www.sinopecnews.com.cn/xnews/content/2021- 01/22/content_140531.html.
    [2] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,2018,39(2):207–216. doi: 10.11743/ogg20180201

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201

    [3] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术,2017,45(6):8–13. doi: 10.11911/syztjs.201706002

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oil-field[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13. doi: 10.11911/syztjs.201706002

    [4] 李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002

    LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002

    [5] 宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):163–168.

    XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low-friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Specail Oil & Gas Reservoirs, 2020, 27(3): 163–168.

    [6] 于洋,李双贵,高德利,等. 顺北5-5H 超深ϕ120.65 mm 小井眼水平井钻井技术[J]. 石油钻采工艺,2020,42(3):276–281.

    YU Yang, LI Shuanggui, GAO Deli, et al. Drilling techniques used in Well Shunbei 5-5H, an ultradeep slimhole ϕ120.65 mm horizontal well[J]. Oil Drilling & Production Technology, 2020, 42(3): 276–281.

    [7] 李新勇,纪成,王涛,等. 顺北油田上浮剂封堵及泵注参数实验研究[J]. 断块油气田,2021,28(1):139–144.

    LI Xinyong, JI Cheng, WANG Tao, et al. Experimental study on plugging performance and pumping parameters of floating agent in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 139–144.

    [8] 翟科军,于洋,刘景涛,等. 顺北油气田火成岩侵入体覆盖区超深井优快钻井技术[J]. 石油钻探技术,2020,48(2):1–5.

    ZHAI Kejun, YU Yang, LIU Jingtao, et al. Ultra-deep well drilling technology in the igneous invasion coverage area of the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 1–5.

    [9] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺,2019,41(2):130–136.

    LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136.

    [10] 刘彪,张俊,王居贺,等. 顺北油田含侵入岩区域超深井安全高效钻井技术[J]. 石油钻采工艺,2020,42(2):138–142.

    LIU Biao, ZHANG Jun, WANG Juhe, et al. Technologies for the safe and efficient drilling of ultradeep wells in the areas with intrusive rocks in the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 138–142.

    [11] 沈兆超,霍如军,郁燕飞,等. 苏里格南区块小井眼井二开一趟钻钻井技术[J]. 石油钻探技术,2020,48(6):15–20.

    SHEN Zhaochao, HUO Rujun, YU Yanfei, et al. One-trip drilling technology of the second-spud section for slim-holes in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2020, 48(6): 15–20.

    [12] 陈新勇,徐明磊,马樱,等. 杨税务潜山油气藏大位移井钻井完井关键技术[J]. 石油钻探技术,2021,49(2):14–19.

    CHEN Xinyong, XU Minglei, MA Ying,et al. Drilling and completion technologies of extended-reach wells in the Yangshuiwu buried hill reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14–19.

    [13] 孙明光. 顺北油田超深小井眼水平井定向钻井技术[J]. 钻采工艺,2020,43(2):19–22. doi: 10.3969/J.ISSN.1006-768X.2020.02.05

    SUN Mingguang. Directional drilling technique for ultra-deep horizontal slimhole wells in Shunbei Oilfield[J]. Drilling & Production Technology, 2020, 43(2): 19–22. doi: 10.3969/J.ISSN.1006-768X.2020.02.05

    [14] 吴宏均,令文学,初永涛. 吉林油田浅层丛式水平井井眼轨迹控制技术[J]. 石油钻探技术,2011,39(5):31–34. doi: 10.3969/j.issn.1001-0890.2011.05.007

    WU Hongjun, LING Wenxue, CHU Yongtao. Trajectory control technology for shallow cluster horizontal wells in Jilin Oilfield[J]. Petroleum Drilling Techniques, 2011, 39(5): 31–34. doi: 10.3969/j.issn.1001-0890.2011.05.007

    [15] 宋争. 涪陵江东与平桥区块页岩气水平井井眼轨迹控制技术[J]. 石油钻探技术,2017,45(6):14–18. doi: 10.11911/syztjs.201706003

    SONG Zheng. Wellbore trajectory control techniques for horizontal well in the Jiangdong and Pingqiao Blocks of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(6): 14–18. doi: 10.11911/syztjs.201706003

    [16] 刘修善,何树山,邹野. 导向钻具几何造斜率的研究[J]. 石油学报,2004,25(6):83–87. doi: 10.3321/j.issn:0253-2697.2004.06.017

    LIU Xiushan, HE Shushan, ZOU Ye. Study on the geometric build angle rate of steerable motor[J]. Acta Petrolei Sinica, 2004, 25(6): 83–87. doi: 10.3321/j.issn:0253-2697.2004.06.017

    [17] 刘修善. 导向钻具几何造斜率的实用计算方法[J]. 天然气工业,2005,25(11):50–52. doi: 10.3321/j.issn:1000-0976.2005.11.017

    LIU Xiushan. Practical calculation method of geo metric deflection rate of guide drilling tool[J]. Natural Gas Industry, 2005, 25(11): 50–52. doi: 10.3321/j.issn:1000-0976.2005.11.017

    [18] 侯学军,罗发强,钟文建,等. 定向井单弯单稳涡轮钻具造斜率预测[J]. 石油钻采工艺,2021,43(6):705–712.

    HOU Xuejun, LUO Faqiang, ZHONG Wenjian, et al. Predicting the build-up rate of single-angle & single-stabilizer turbodrill in directional well[J]. Oil Drilling & Production Technology, 2021, 43(6): 705–712.

    [19] 苏义脑. 极限曲率法及其应用[J]. 石油学报,1997,18(3):112–116. doi: 10.7623/syxb199703017

    SU Yinao. A method of limiting curvature and its application[J]. Acta Petrolei Sinica, 1997, 18(3): 112–116. doi: 10.7623/syxb199703017

    [20] 白家祉, 苏义脑. 井斜控制理论与实践[M]. 北京: 石油工业出版社, 1990.

    BAI Jiazhi, SU Yinao. Theory and practice of well deviation control[M]. Beijing: Petroleum Industry Press, 1990.

    [21] 史玉才,管志川,赵洪山,等. 底部钻具组合造斜率预测新方法[J]. 中国石油大学学报(自然科学版),2017,41(1):85–89.

    SHI Yucai, GUAN Zhichuan, ZHAO Hongshan, et al. A new method for build-up rate prediction of bottom-hole assembly in well drilling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 85–89.

    [22]

    SHI Yucai, TENG Zhixiang, GUAN Zhichuan, et al. A powerful build-up rate(BUR) prediction method for the static push-the-bit rotary steerable system(RSS)[J]. Energies, 2020, 13(18): 4847. doi: 10.3390/en13184847

  • 期刊类型引用(13)

    1. 蔡润峰,陈卓,张磊,赵佳彬. 渤中构造储层保护技术体系及应用. 中国石油和化工标准与质量. 2024(05): 196-198 . 百度学术
    2. 刘明,许鹏,陈述,夏林,边建杰,张华. 四川盆地致密气水平井钻井关键技术. 非常规油气. 2024(04): 152-159 . 百度学术
    3. 周英操,郭庆丰,蔡骁,王正旭. 精细控压钻井技术及装备研究进展. 钻采工艺. 2024(04): 94-104 . 百度学术
    4. 赵凌霄,王春才,叶素桃,邹双,王健栋,王彪. 东秋X井高压气层窄密度窗口固井技术. 钻井液与完井液. 2024(05): 661-667 . 百度学术
    5. 葛磊,杨春旭,郭兵,王志远,王子毓. 气侵后井底初始气泡平均直径预测模型实验研究. 石油钻探技术. 2023(02): 46-53 . 本站查看
    6. 刘德平,付焘,杨璨,刘风云,赵任飞,李秋茂,蔡刚. 漏失地层圈闭压力的形成与处置技术. 钻采工艺. 2021(06): 40-44 . 百度学术
    7. 王文彬,郭军,苑坤,董旭,韩菲. 桂中-南盘江地区黔水地1井卡钻事故处理及原因分析. 石油工业技术监督. 2020(12): 59-62 . 百度学术
    8. 黎凌,卫俊佚,张谦. 用于精细控压钻井的无机凝胶隔离塞的研制及现场试验. 石油钻探技术. 2019(01): 45-51 . 本站查看
    9. 李维,代锋,左星. 存在井间干扰的页岩气井精细控压技术应用. 钻采工艺. 2019(05): 103-105 . 百度学术
    10. 左星,张军,贺明敏,舒挺,蒋林,何嵬. “控压起钻+重浆帽”技术在裂缝储层中的应用与认识. 钻采工艺. 2019(06): 21-24+2 . 百度学术
    11. 黎凌. 水乳环氧树脂对水硬性凝胶隔段综合性能的影响. 油田化学. 2018(04): 597-602 . 百度学术
    12. 郗凤亮,徐朝阳,马金山,齐金涛,徐海潮. 控压钻井自动分流管汇系统设计与数值模拟研究. 石油钻探技术. 2017(05): 23-29 . 本站查看
    13. 李军,何淼,柳贡慧,段永贤,陈军. 控压钻井起下钻钻井液帽优化设计. 石油机械. 2016(12): 21-24 . 百度学术

    其他类型引用(3)

图(5)  /  表(2)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  196
  • PDF下载量:  96
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-03-13
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回