Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium
-
摘要: 为了解多层介质裂缝中电磁测井仪器的响应特征,以低频电磁场理论为基础,利用有限元软件建立了单层介质和5层介质地层裂缝模型,在此基础上,对层状介质水力裂缝接收线圈的感应电动势进行了正演模拟。模拟结果显示,裂缝位置处的感应电动势曲线变化显著。裂缝为对称裂缝,裂缝与井眼的夹角在25°~90°时,夹角越小,裂缝响应信号越曲折;夹角在90°~155°时,夹角越大,裂缝响应信号越曲折。裂缝为非对称裂缝,展宽角在30°~150°时,展宽角越大,多层介质条件下的裂缝响应信号的非对称性越明显。研究结果表明,多层介质对裂缝响应曲线有一定的影响,研究结果为水平井水力压裂探测和评价提供了理论依据。Abstract: For better understanding of response characteristics of electromagnetic logging instruments in fractures in multi-layer medium, based on the low-frequency electromagnetic field theory, fracture models of a single-layer medium formation and a five-layer medium formation were built with finite-element software, respectively. On this basis, forward modeling of the induced electromotive force in the receiving coil in hydraulic fractures in the layered medium was carried out. The results showed that the induced electromotive force curve changed significantly at the fracture position. When the fracture is symmetrical and the angle between the fracture and the borehole is from 25° to 90°, the smaller the angle, the more tortuous the fracture response signal, which was exactly opposite to the case when the angle was between 90° and 155°. If the fracture was asymmetrical, the larger the widening angle, the more obvious the asymmetry of fracture response signal under the condition of multi-layer medium when the widening angle was in the range of 30–150°. The research shows that a multi-layer medium has influence on the fracture response curve, and the research results provide a theoretical basis for the detection and evaluation of hydraulic fractures in horizontal wells.
-
-
-
[1] 霍玉雁,岳喜洲,孙建孟. 测井资料在压裂设计中的应用[J]. 测井技术,2008,32(5):446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014 HUO Yuyan, YUE Xizhou, SUN Jianmeng. Application of logging data in fracturing design[J]. Well Logging Technology, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
[2] REN Yi, HUANG Weifeng, LIU Qinghuo, et al. Accurate fracture scattering simulation by thin dielectric sheet-based surface integral equation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1448–1451. doi: 10.1109/LGRS.2016.2591079
[3] DAI Junwen, FANG Yuan, ZHOU Jianyang, et al. Analysis of electromagnetic induction for hydraulic fracture diagnostics in open and cased boreholes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 264–271. doi: 10.1109/TGRS.2017.2746346
[4] YAN Liangjun, CHEN Xiaoxiong, TANG Hao, et al. Continuous TDEM for monitoring shale hydraulic fracturing[J]. Applied Geophysics, 2018, 15(1): 26–34. doi: 10.1007/s11770-018-0661-1
[5] ZHANG Liming, QI Ji, LI Lixin, et al. A forward modeling method based on electromagnetic theory to measure the parameters of hydraulic fracture[J]. Fuel, 2019, 251: 466–473. doi: 10.1016/j.fuel.2019.04.075
[6] YANG Kai, TORRES-VERDÍN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
[7] HUANG Weifeng, WANG Hanming, ZHAN Qiwei, et al. Thin dielectric sheet-based surface integral equation for the scattering simulation of fractures in a layered medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7606–7612. doi: 10.1109/TGRS.2019.2914611
[8] LI Yang, LIU Dejun, ZHAI Ying, et al. 3-D FEM azimuth forward modeling of hydraulic fractures based on electromagnetic theory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 246–250. doi: 10.1109/LGRS.2020.2970441
[9] 仵杰,任垚煜,贺秋利,等. 电磁远探测仪器参数设计[J]. 西安石油大学学报(自然科学版),2021,36(1):105–112. WU Jie, REN Yaoyu, HE Qiuli, et al. Parameter design of remote detection tool with electromagnetic method[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2021, 36(1): 105–112.
[10] 冯硕,刘得军,张颖颖,等. 基于COMSOL的井地电阻率正演研究[J]. 断块油气田,2013,20(5):589–592. FENG Shuo, LIU Dejun, ZHANG Yingying, et al. Study on borehole-to-ground resistivity forward modeling based on COMSOL[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 589–592.
[11] ANDERSON B, GIANZERO S. Mathematical theory for the fields due to a finite a. c. coil in an infinitely thick bed with an arbitrary number of co-axial layers[J]. The Log Analyst, 1984, 25(2): SPWLA–1984-vXXVn2a3.
[12] 黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132 HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
[13] 李辉,刘得军,刘彦昌,等. 自适应hp-FEM在随钻电阻率测井仪器响应数值模拟中的应用[J]. 地球物理学报,2012,55(8):2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030 LI Hui, LIU Dejun, LIU Yanchang, et al. Application of self-adaptive hp-FEM in numerical simulation of resistivity logging-while-drilling[J]. Chinese Journal of Geophysics, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
[14] 李辉,刘得军,刘悦,等. 基于自适应hp-FEM的过套管电阻率测井仪器响应数值模拟[J]. 地球物理学进展,2013,28(6):3243–3253. doi: 10.6038/pg20130652 LI Hui, LIU Dejun, LIU Yue, et al. Numerical simulation of TCRT based on self-adaptive hp-FEM[J]. Progress in Geophysics, 2013, 28(6): 3243–3253. doi: 10.6038/pg20130652
[15] 谢媛,刘得军,李彩芳,等. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术,2020,48(2):123–129. doi: 10.11911/syztjs.2019133 XIE Yuan, LIU Dejun, LI Caifang, et al. Forward modeling in hydraulic fracture detection by means of electromagnetic wave logging while drilling in vertical wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123–129. doi: 10.11911/syztjs.2019133
[16] 朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术,2015,43(2):63–70. ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
[17] LIU Dejun, MA Zhonghua, XING Xiaonan, et al. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. Applied Geophysics, 2013, 10(1): 97–108. doi: 10.1007/s11770-013-0368-2
[18] SHARMA M M, BASU S. Fracture diagnosis using electromagnetic methods: United States Patent Application 20160282502[P]. 2016-09-29.
[19] PARDO D, TORRES-VERDÍN C, PASZYNSKI M. Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-element formulation[M]//HARDAGE B. SEG Technical Program Expanded Abstracts 2007. Tulsa: Society of Exploration Geophysicists, 2007: 653–657.
[20] 杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126. doi: 10.11911/syztjs.2020025 YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126. doi: 10.11911/syztjs.2020025
[21] 孟昆,刘迪仁,徐观佑,等. 泥页岩储层水平井随钻电磁波电阻率测井响应特性[J]. 断块油气田,2018,25(4):464–468. MENG Kun, LIU Diren, XU Guanyou, et al. Response characteristics of electromagnetic wave resistivity LWD tool of muddy shale fractured reservoir in horizontal well[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 464–468.
-
期刊类型引用(1)
1. 冷光耀. 空气和CO_2辅助蒸汽吞吐室内实验研究. 油田化学. 2018(03): 447-450+479 . 百度学术
其他类型引用(0)