留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井下柔性复合管预置电缆数字式分注技术

杨玲智 周志平 杨海恩 李法龙 胡改星

杨玲智,周志平,杨海恩,等. 井下柔性复合管预置电缆数字式分注技术[J]. 石油钻探技术,2022, 50(6):120-125 doi: 10.11911/syztjs.2022057
引用本文: 杨玲智,周志平,杨海恩,等. 井下柔性复合管预置电缆数字式分注技术[J]. 石油钻探技术,2022, 50(6):120-125 doi: 10.11911/syztjs.2022057
YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Digital separated-zone water injection technologies with cable-preset downhole flexible composite pipe [J]. Petroleum Drilling Techniques,2022, 50(6):120-125 doi: 10.11911/syztjs.2022057
Citation: YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Digital separated-zone water injection technologies with cable-preset downhole flexible composite pipe [J]. Petroleum Drilling Techniques,2022, 50(6):120-125 doi: 10.11911/syztjs.2022057

井下柔性复合管预置电缆数字式分注技术

doi: 10.11911/syztjs.2022057
基金项目: 国家科技重大专项“低渗-超低渗油藏提高储量动用关键工艺技术”(编号:2017ZX05013-005)、中国石油科技专项“长庆油田波码通信控制分层注水技术与现场试验”(编号:kt2021-15-03)联合资助
详细信息
    作者简介:

    杨玲智(1986—),男,吉林白山人,2009年毕业于中国石油大学(北京)石油工程专业, 2012年获西南石油大学油气田开发工程专业硕士学位,高级工程师,主要从事油田精细注水工艺、管柱及工具设计研究。E-mail:ylzh_cq@petrochina.com.cn

  • 中图分类号: TE357.6+2

Digital Separated-Zone Water Injection Technologies with Cable-PresetDownhole Flexible Composite Pipe

  • 摘要:

    低渗透油田分注管柱长期服役后腐蚀结垢严重、分层注水合格率下降快。为此,设计了井下柔性复合管预置电缆数字式分注工艺管柱,研发了智能配水器与过电缆封隔器等关键工具,开展了管柱抗外压、抗拉强度等关键性能室内评价,形成了适用于井下高压条件下的柔性复合管分层注水技术。室内评价结果表明,管柱满足分注井封隔器坐封压力与最大抗外压要求,智能配水器流量测试误差小于2%。现场试验4口井,最长服役时间已超过2年,分层注水合格率100%。研究表明,预置电缆数字式分注技术应用柔性复合管,可以有效提升管柱耐腐蚀性能,实现分层流量自动测调、远程验封和数据监测等功能,满足封隔器坐封、反洗井及后期测试要求,具有较好的应用效果。

     

  • 图 1  预置电缆柔性复合管

    Figure 1.  Cable-preset flexible composite pipe

    图 2  智能配水器

    Figure 2.  Intelligent water distributor

    图 3  过电缆封隔器

    Figure 3.  Cable-penetrated packer

    图 4  管柱连接示意

    Figure 4.  String connection

    图 5  柔性复合管转换接头

    Figure 5.  Flexible composite pipe adapter

    图 6  增强层各层纤维纵向应力变化

    Figure 6.  Vertical stress change in each layer of fiber at reinforcement layer

    图 7  增强层各层纤维横向应力变化

    Figure 7.  Horizontal stress change in each layer of fiber at reinforcement layer

    图 8  爆破压力测试值与模拟结果对比曲线

    Figure 8.  Comparison of results of burst pressure experiment with simulation results

    图 9  流量测试结果与标准值的对比

    Figure 9.  Comparison results of flow tests

    图 10  压力测试结果与标准值的对比

    Figure 10.  Comparison results of pressure tests

    图 11  井下实际工况下伸长量变化曲线

    Figure 11.  Variation curves of elongation under actual downhole working conditions

    图 12  封隔器验封压力测试曲线

    Figure 12.  Pressure test curves of packer sealing verification

    图 13  Q93-4井监测历史数据曲线

    Figure 13.  Monitoring data history of Well Q93-4

    表  1  现场试验井情况统计

    Table  1.   Situation statistics of field test wells

    井号完井时间管柱长度/
    m
    管柱伸
    长量/m
    封隔器验
    封情况
    上层配注量/
    (m3∙d−1)
    上层注水量/
    (m3∙d−1)
    上层水量误差,%下层配注量/
    (m3∙d−1)
    下层注水量/
    (m3∙d−1)
    下层水量
    误差,%
    Q93-42019.10.211 8411.6合格1616.543.371414.372.64
    Q91-82019.10.291 8371.9合格1515.140.931514.553.00
    Q65-62019.11.151 8592.4合格10 9.881.201516.016.73
    Q65-42020.07.251 7811.7合格1010.565.602020.231.15
    下载: 导出CSV
  • [1] 刘合,裴晓含,罗凯,等. 中国油气田开发分层注水工艺技术现状与发展趋势[J]. 石油勘探与开发,2013,40(6):733–737. doi: 10.11698/PED.2013.06.13

    LIU He, PEI Xiaohan, LUO Kai, et al. Current status and trend of separated layer water flooding in China[J]. Petroleum Exploration and Development, 2013, 40(6): 733–737. doi: 10.11698/PED.2013.06.13
    [2] 刘合,裴晓含,贾德利,等. 第四代分层注水技术内涵、应用与展望[J]. 石油勘探与开发,2017,44(4):608–614. doi: 10.11698/PED.2017.04.14

    LIU He, PEI Xiaohan, JIA Deli, et al. Connotation, application and prospect of the fourth-generation separated layer water injection technology[J]. Petroleum Exploration and Development, 2017, 44(4): 608–614. doi: 10.11698/PED.2017.04.14
    [3] 李东雷. 预置电缆智能分层注聚合物技术的研究与应用[J]. 石油机械,2016,44(10):93–96. doi: 10.16082/j.cnki.issn.1001-4578.2016.10.021

    LI Donglei. Intelligent layered polymer injection technology with preset cable[J]. China Petroleum Machinery, 2016, 44(10): 93–96. doi: 10.16082/j.cnki.issn.1001-4578.2016.10.021
    [4] 杨玲智,巨亚锋,申晓莉,等. 数字式分层注水流动特性研究与分析[J]. 石油机械,2014,42(10):52–55. doi: 10.3969/j.issn.1001-4578.2014.10.013

    YANG Lingzhi, JU Yafeng, SHEN Xiaoli, et al. Study and analysis of flow characteristics for digital separate-zone water flooding[J]. China Petroleum Machinery, 2014, 42(10): 52–55. doi: 10.3969/j.issn.1001-4578.2014.10.013
    [5] 杨玲智,于九政,王子建,等. 鄂尔多斯超低渗储层智能注水监控技术[J]. 石油钻采工艺,2017,39(6):756–759. doi: 10.13639/j.odpt.2017.06.017

    YANG Lingzhi, YU Jiuzheng, WANG Zijian, et al. An intelligent waterflood monitoring technology used for the ultra-low permeability reservoirs in Ordos[J]. Oil Drilling & Production Technology, 2017, 39(6): 756–759. doi: 10.13639/j.odpt.2017.06.017
    [6] 姚斌,杨玲智,于九政,等. 波码通信数字式分层注水技术研究与应用[J]. 石油机械,2020,48(5):71–77. doi: 10.16082/j.cnki.issn.1001-4578.2020.05.012

    YAO Bin, YANG Lingzhi, YU Jiuzheng, et al. Digital layered water injection based on wave code communication[J]. China Petroleum Machinery, 2020, 48(5): 71–77. doi: 10.16082/j.cnki.issn.1001-4578.2020.05.012
    [7] 赵广渊,王天慧,杨树坤,等. 渤海油田液压控制智能分注优化关键技术[J]. 石油钻探技术,2022,50(1):76–81. doi: 10.11911/syztjs.2021125

    ZHAO Guangyuan, WANG Tianhui, YANG Shukun, et al. Key optimization technologies of intelligent layered water injection with hydraulic control in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 76–81. doi: 10.11911/syztjs.2021125
    [8] 何海峰. 胜利海上疏松砂岩油藏分层防砂分层采油技术[J]. 石油钻探技术,2021,49(6):99–104. doi: 10.11911/syztjs.2021027

    HE Haifeng. Separate layer sand control and oil production technology in offshore unconsolidated sandstone reservoirs of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(6): 99–104. doi: 10.11911/syztjs.2021027
    [9] 贾贻勇,李永康. 胜坨油田套损井分层注水及测调技术[J]. 石油钻探技术,2021,49(2):107–112. doi: 10.11911/syztjs.2020137

    JIA Yiyong, LI Yongkang. Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 107–112. doi: 10.11911/syztjs.2020137
    [10] 肖国华,黄晓蒙,李会杰,等. 直读测调偏心恒流配水器研制[J]. 特种油气藏,2020,27(5):151–156. doi: 10.3969/j.issn.1006-6535.2020.05.023

    XIAO Guohua, HUANG Xiaomeng, LI Huijie, et al. Development of direct-reading measurement-adjustment eccentric constant-flow water distributor[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 151–156. doi: 10.3969/j.issn.1006-6535.2020.05.023
    [11] 赵广渊,季公明,杨树坤,等. 液控智能分注工艺调配及分层注水量计算方法[J]. 断块油气田,2021,28(2):258–261.

    ZHAO Guangyuan, JI Gongming, YANG Shukun, et al. Allocation method and calculation of layered injection rate of liquid control intelligent layered water injection process[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 258–261.
    [12] 杨玲智,刘延青,胡改星,等. 长庆油田同心验封测调一体化分层注水技术[J]. 石油钻探技术,2020,48(2):113–117. doi: 10.11911/syztjs.2020023

    YANG Lingzhi, LIU Yanqing, HU Gaixing, et al. Stratified water injection technology of concentric seal-check, logging and adjustment integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113–117. doi: 10.11911/syztjs.2020023
    [13] 刘义刚,陈征,孟祥海,等. 渤海油田分层注水井电缆永置智能测调关键技术[J]. 石油钻探技术,2019,47(3):133–139. doi: 10.11911/syztjs.2019044

    LIU Yigang, CHEN Zheng, MENG Xianghai, et al. Cable implanted intelligent injection technology for separate injection wells in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 133–139. doi: 10.11911/syztjs.2019044
    [14] 申晓莉,胡美艳,于九政,等. 柔性复合油管注水管柱的设计与试验[J]. 石油钻采工艺,2013,35(4):111–113. doi: 10.3969/j.issn.1000-7393.2013.04.033

    SHEN Xiaoli, HU Meiyan, YU Jiuzheng, et al. Designing and experiment of flexible composite water injection string[J]. Oil Drilling & Production Technology, 2013, 35(4): 111–113. doi: 10.3969/j.issn.1000-7393.2013.04.033
    [15] 王薇,王俊涛,魏向军,等. 井下柔性复合管注水技术及应用[J]. 石油钻采工艺,2017,39(1):83–87. doi: 10.13639/j.odpt.2017.01.016

    WANG Wei, WANG Juntao, WEI Xiangjun, et al. Water injection technology based on downhole flexible composite pipe and its application[J]. Oil Drilling & Production Technology, 2017, 39(1): 83–87. doi: 10.13639/j.odpt.2017.01.016
    [16] 胡美艳,申晓莉,于九政,等. 注水井用非金属复合材料油管试验检测与评价[J]. 石油矿场机械,2014,43(1):49–52. doi: 10.3969/j.issn.1001-3482.2014.01.013

    HU Meiyan, SHEN Xiaoli, YU Jiuzheng, et al. Testing and experiment of nonmetal compound material tubing for injection well[J]. Oil Field Equipment, 2014, 43(1): 49–52. doi: 10.3969/j.issn.1001-3482.2014.01.013
    [17] 李风,张绍东,王观军,等. 玻纤带增强黏合型HDPE内衬柔性复合管性能试验研究[J]. 塑料工业,2021,49(增刊1):74–77. doi: 10.3969/j.issn.1005-5770.2021.Z1.014

    LI Feng, ZHANG Shaodong, WANG Guanjun, et al. Experimental study on the performance of HDPE flexible composite pipe with glass fiber reinforced adhesive liner[J]. China Plastics Industry, 2021, 49(supplement1): 74–77. doi: 10.3969/j.issn.1005-5770.2021.Z1.014
    [18] 赵德银,杨静,李文升,等. 流动沙丘地区油气集输用柔性复合管安全评价方法[J]. 油气储运,2021,40(8):880–887.

    ZHAO Deyin, YANG Jing, LI Wensheng, et al. Safety evaluation method for flexible composite gathering and transmission pipelines of oil and gas in shifting dune areas[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 880–887.
    [19] 中华人民共和国国家质量监督检验检疫总局. 流体输送用热塑性塑料管材耐内压试验方法: GB/T 6111—2003[S]. 北京: 中国标准出版社, 2003.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Thermoplastics pipes for the conveyance of fluids—resistance to internal pressure—test method: GB/T 6111—2003[S]. Beijing: Standards Press of China, 2003.
    [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 耐液体化学试剂性能的测定: GB/T 11547—2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Plastic-methods of test for the determination of the effects of immersion in liquid chemicals: GB/T 11547—2008[S]. Beijing: Standards Press of China, 2009.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-02
  • 修回日期:  2022-07-10
  • 网络出版日期:  2022-11-15

目录

    /

    返回文章
    返回