留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顺北5号断裂带南部压力剖面建立及井身结构优化

李双贵 罗江 于洋 汤明 易浩 曾德智

李双贵,罗江,于洋,等. 顺北5号断裂带南部压力剖面建立及井身结构优化[J]. 石油钻探技术,2022, 50(0):1-7 doi: 10.11911/syztjs.2022037
引用本文: 李双贵,罗江,于洋,等. 顺北5号断裂带南部压力剖面建立及井身结构优化[J]. 石油钻探技术,2022, 50(0):1-7 doi: 10.11911/syztjs.2022037
LI Shuanggui, LUO Jiang, YU Yang, et al. Establishment of Pressure Profile and Optimization of Well Structure in the Southern Shunbei No. 5 Fault Zone[J]. Petroleum Drilling Techniques,2022, 50(0):1-7 doi: 10.11911/syztjs.2022037
Citation: LI Shuanggui, LUO Jiang, YU Yang, et al. Establishment of Pressure Profile and Optimization of Well Structure in the Southern Shunbei No. 5 Fault Zone[J]. Petroleum Drilling Techniques,2022, 50(0):1-7 doi: 10.11911/syztjs.2022037

顺北5号断裂带南部压力剖面建立及井身结构优化

doi: 10.11911/syztjs.2022037
基金项目: 国家自然科学基金面上项目“静载、振动与腐蚀作用下H2S/CO2气井完井管柱螺纹密封面的力化学损伤机制研究”(编号:51774249)和中国石化重大科技项目 “顺北油气田一区优快钻井技术研究”(编号:P18021-1)联合资助
详细信息
    作者简介:

    李双贵(1979—),男,四川合江人,2004年毕业于西南石油学院石油工程专业,2013年获西南石油大学油气井工程专业硕士学位,高级工程师,主要从事优快钻井技术及配套工艺研究。E-mail: lisg.xbsj@sinopec.com

  • 中图分类号: TE22

Establishment of Pressure Profile and Optimization of Well Structure in the Southern Shunbei No. 5 Fault Zone

  • 摘要:

    顺北5号断裂带南部受断裂构造运动影响,钻井过程中普遍存在恶性漏失、钻井效率低等问题。为此,基于邻井成像测井资料和钻井资料,建立了漏失压力计算模型,得到了顺北5号断裂带南部地层四压力剖面;根据四压力剖面和地质难点优化井身结构,侵入体未发育区域由原有的五开井身结构优化为四开,并减小井眼尺寸,缩短了钻井周期;针对侵入体发育区域,设计了地层承压能力强的常规四开井身结构和缩小井眼尺寸的常规五开专封井身结构,提高了井壁稳定性。现场试验表明,建立的漏失压力计算模型的预测准确性较高;应用常规五开专封井身结构后,平均钻井周期缩短44~55 d,固井质量合格率提高37%。研究表明,优化后的顺北5号断裂带井身结构能够降低钻井完井成本,为复杂地层超深井井身结构设计提供了技术借鉴。

     

  • 图 1  裂缝内钻井液流动模型示意图

    Figure 1.  Schematic diagram of drilling fluid flow model in fracture

    图 2  SHB5-10井地层四压力剖面预测结果

    Figure 2.  Prediction results of formation four pressure profile in Well SHB5-10

    图 3  低风险区域井身结构优化方案

    Figure 3.  Optimization scheme of casing program in low risk area

    图 4  侵入体发育区域井身结构优化方案

    Figure 4.  Optimization scheme of casing program in intrusion development area

    表  1  5号断裂带南部地层四压力剖面预测结果

    Table  1.   prediction results of formation IV pressure profile in the south of No. 5 fault zone

    地层孔隙压力当量
    密度/(kg·L−1
    坍塌压力当量
    密度/(kg·L−1
    漏失压力当量
    密度/(kg·L−1
    破裂压力当量
    密度/(kg·L−1
    第四系—三叠系1.10~1.161.05~1.201.60~2.101.65~2.20
    二叠系1.06~1.201.15~1.221.24~1.421.28~1.52
    石炭系1.14~1.231.10~1.321.50~1.731.54~1.78
    泥盆系1.10~1.191.18~1.301.65~1.751.70~1.83
    志留系塔塔埃尔塔格组1.08~1.231.26~1.351.33~1.411.60~1.82
    志留系柯坪塔格组1.14~1.361.28~1.381.38~1.661.75~1.88
    奥陶系桑塔木组1.15~1.241.18~1.481.88~2.101.95~2.15
    奥陶系良里塔格组-鹰山组1.03~1.171.08~1.301.88~2.161.95~2.25
    下载: 导出CSV
  • [1] 曹自成,路清华,顾忆,等. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质,2020,41(5):975–984. doi: 10.11743/ogg20200508

    CAO Zicheng, LU Qinghua, GU Yi, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 975–984. doi: 10.11743/ogg20200508
    [2] 王斌,赵永强,何生,等. 塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素[J]. 石油与天然气地质,2020,41(5):965–974. doi: 10.11743/ogg20200507

    WANG Bin, ZHAO Yongqiang, HE Sheng, et al. Hydrocarbon accumulation stages and their controlling factors in the northern Ordovician Shunbei 5 fault zone, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 965–974. doi: 10.11743/ogg20200507
    [3] 杨红歧,孙连环,敖竹青,等. 顺北油气田一区超深井三开长封固段固井技术[J]. 石油钻探技术,2020,48(6):33–39. doi: 10.11911/syztjs.2020110

    YANG Hongqi, SUN Lianhuan, AO Zhuqing, et al. Anti-leakage cementing technology for the long well section below technical casing of ultra-deep wells in the No. 1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33–39. doi: 10.11911/syztjs.2020110
    [4] 刘彪,张俊,王居贺,等. 顺北油田含侵入岩区域超深井安全高效钻井技术[J]. 石油钻采工艺,2020,42(2):138–142. doi: 10.13639/j.odpt.2020.02.003

    LIU Biao, ZHANG Jun, WANG Juhe, et al. Technologies for the safe and efficient drilling of ultradeep wells in the areas with intrusive rocks in the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 138–142. doi: 10.13639/j.odpt.2020.02.003
    [5] 陈养龙,席宝滨,晁文学,等. 顺北区块Ⅰ号断裂带钻井分层提速技术[J]. 断块油气田,2018,25(5):649–652.

    CHEN Yanglong, XI Baobin, CHAO Wenxue, et al. Improving drilling speed technologies by stratification for No. 1 fault-zone of Shunbei Block[J]. Fault-Block Oil & Gas Field, 2018, 25(5): 649–652.
    [6] 周波,曹颖辉,齐井顺,等. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学,2018,29(6):773–783. doi: 10.11764/j.issn.1672-1926.2018.05.020l

    ZHOU Bo, CAO Yinghui, QI Jingshun, et al. The development mechanism of Lower Ordovician reservoir in the Gucheng area, Tarim Basin, China[J]. Natural Gas Geoscience, 2018, 29(6): 773–783. doi: 10.11764/j.issn.1672-1926.2018.05.020l
    [7] 林波,张旭,况安鹏,等. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例[J]. 石油学报,2021,42(7):906–923. doi: 10.7623/syxb202107006

    LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance: a case study of No. 1 fault and No. 5 fault in Shunbei Area[J]. Acta Petrolei Sinica, 2021, 42(7): 906–923. doi: 10.7623/syxb202107006
    [8] 陈曾伟,刘四海,林永学,等. 塔河油田顺西2井二叠系火成岩裂缝性地层堵漏技术[J]. 钻井液与完井液,2014,31(1):40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011

    CHEN Zengwei, LIU Sihai, LIN Yongxue, et al. Lost circulation control technology for fractured Permian igneous rock formation in Well Shunxi2 of Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 40–43. doi: 10.3969/j.issn.1001-5620.2014.01.011
    [9] 刘彪,潘丽娟,易浩,等. 顺北含辉绿岩超深井井身结构优化设计[J]. 石油钻采工艺,2016,38(3):296–301. doi: 10.13639/j.odpt.2016.03.004

    LIU Biao, PAN Lijuan, YI Hao, et al. Casing program optimization of ultra-deep well with diabase reservoir in Shunbei Block[J]. Oil Drilling & Production Technology, 2016, 38(3): 296–301. doi: 10.13639/j.odpt.2016.03.004
    [10] 袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. doi: 10.11911/syztjs.2020067

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27. doi: 10.11911/syztjs.2020067
    [11] 方俊伟,贾晓斌,刘文堂,等. ZYSD高失水固结堵漏技术在顺北5-9井中的应用[J]. 钻井液与完井液,2021,38(1):74–78. doi: 10.3969/j.issn.1001-5620.2021.01.012

    FANG Junwei, JIA Xiaobin, LIU Wentang, et al. Control mud losses in Well Shunbei-5-9 with ZYSD high fluid loss solidifying slurry[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 74–78. doi: 10.3969/j.issn.1001-5620.2021.01.012
    [12] 向雄,陈缘博,张立权,等. D气田衰竭疏松石英砂岩浅气层漏失机理及防漏技术[J]. 钻井液与完井液,2020,37(5):613–619.

    XIANG Xiong, CHEN Yuanbo, ZHANG Liquan, et al. Mud losses into depleted loose quartz sandstone shallow gas zones in gas field D: Mechanisms and preventing technology[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 613–619.
    [13] 朱立鑫,黄维安,段文广,等. 玛湖区块易漏地层防漏堵漏技术[J]. 钻井液与完井液,2020,37(4):469–475. doi: 10.3969/j.issn.1001-5620.2020.04.011

    ZHU Lixin, HUANG Weian, DUAN Wenguang, et al. Study and application of technology for preventing and controlling mud losses in Mahu Block[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 469–475. doi: 10.3969/j.issn.1001-5620.2020.04.011
    [14] YANG Mou, YANG Lvchao, WANG Tao, et al. Estimating formation leakage pressure using a coupled model of circulating temperature-pressure in an eccentric annulus[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106918. doi: 10.1016/j.petrol.2020.106918
    [15] HE Shiming, TANG Ming, XIONG Jiyou, et al. A numerical model to predict surge and swab pressures for yield power law fluid in concentric annuli with open-ended pipe[J]. Journal of Petroleum Science and Engineering, 2016, 145: 464–472. doi: 10.1016/j.petrol.2016.05.039
    [16] TANG Ming, YUAN Lanfeng, HE Shiming, et al. Simplified modeling of YPL fluid flow through a concentric elliptical annular pipe[J]. Journal of Petroleum Science and Engineering, 2018, 162: 225–232. doi: 10.1016/j.petrol.2017.12.030
    [17] 张洁,汤明,蒋振新,等. 椭圆井眼同心环空赫巴流体流动规律研究及压降计算简化模型[J]. 特种油气藏,2021,28(2):156–162. doi: 10.3969/j.issn.1006-6535.2021.02.024

    ZHANG Jie, TANG Ming, JIANG Zhenxin, et al. Study on flow rules of Herschel-Bulkley fluid in concentric annulus of elliptical wellbore and simplified model for pressure drop calculation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 156–162. doi: 10.3969/j.issn.1006-6535.2021.02.024
    [18] 李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002

    LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2022-08-20
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回