3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan
-
摘要: 川西南地区以五峰组—龙马溪组为页岩气主力生产层位,过路井在茅口组均有良好气测显示,为落实茅口组的潜力,部署靖和1井作为茅口组专层预探井。针对邻区茅口组酸压改造中酸蚀有效作用距离短、改造体积受限等问题,分析了靖和1井钻遇地层的裂缝及孔隙发育特点,从全三维酸蚀裂缝扩展、酸压入井液体以及配套工艺参数入手,研究应用了立体酸压技术。研究表明,多封隔器精细分段配合大排量施工,能够实现以裂缝体连通为目标的立体改造效果;采用3级交替注入压裂液与胶凝酸施工工艺,既能增大裂缝体改造体积,又能增长酸蚀裂缝距离,兼顾了横向深穿透非均匀溶蚀和纵向细分段高动用的改造需求。靖和1井立体酸压后放喷求产,产气量12.52×104 m3/d,较前置酸酸压提高38%,拟合结果显示酸压后裂缝体连通明显。靖和1井茅口组立体酸压成功实施,为川西南地区茅口组及栖霞组、灯影组等气藏的开发提供了新思路。Abstract: Wufeng–Longmaxi Formation is the main shale-gas production horizon in southwestern Sichuan, and good gas indication shows in Maokou Formation in logging data from wells drilled through. To make a confirmation of the gas potential of the formation, Well Jinghe 1 was drilled as a preliminary prospecting well. In light of the short effective acidizing distance and limited stimulation volume from acid fracturing in Maokou Formation of an adjacent area, the fracture and pore development characteristics of the drilled strata in Well Jinghe 1 were analyzed. A three-dimensional (3D) acid fracturing technology was researched from the aspects of full 3D fracture propagation, the acid fracturing fluid system, and supporting operation parameters. The research results show that fine sectioning by multiple packers accompanied by large-displacement can reach the stimulation effect aiming at realizing connection of fractured bodies. The three-stage alternative injection of fracturing fluid and gelled acid can increase the stimulation volume of fractured bodies and the distances of acid etched fractures. This can met the requirement of deep penetrating and non-uniform etching in the horizontal direction as well as the high production of fine sections in the vertical direction. The production of Well Jinghe 1 was 12.52×104m3/d after 3D acid fracturing, which was 38% higher than that with prepad acid fracturing. The post-fracturing fitting results indicated that fractured bodies were well connected. The successful application of 3D acid fracturing technology in Maokou Formation of Well Jinghe 1 provides a new idea for the development of gas reservoirs in Maokou Formation, Qixia Formation, and Dengying Formation in southwestern Sichuan.
-
-
表 1 靖和1井茅口组岩石力学参数统计结果
Table 1 Statistical results of mechanic parameters of Maokou Formation of Well Jinghe 1
抗压强度/MPa 弹性模量/GPa 抗拉强度/MPa 泊松比 脆性指数 110.2 20.179 6.10 0.338 0.39 48.5 15.266 9.83 0.071 98.8 17.212 3.85 0.297 表 2 渝东南地区茅口组试气效果
Table 2 Gas test effect of Maokou Formation in southeastern Chongqing
区块 试气井 产气量/(104m3·d−1) 义和 义和1井 3.06 平桥 大石1井 5.40 大石1HF井 22.55 大石1-1HF井 8.66 大石2HF井 8.70 焦石坝 焦石1井 1.67 涪茅1HF井 4.02 表 3 胶凝酸与转向酸与茅口组岩样的反应动力学方程
Table 3 Reaction kinetic equations of gelled acid and diverting acid of cores from Maokou Formation
酸液 H+传质系数/(cm2·s−1) 动力学方程 反应活化能/(kJ·mol−1) 频率因子 胶凝酸 3.16×10−5 J=3.17×10−5Cs0.358 2 25.53 0.200 1 转向酸 3.16×10−8 J=6.16×10−6Cs0.250 8 16.68 1.092 0×10−3 -
[1] 朱华,杨光,苑保国,等. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学,2018,29(10):1475–1485. doi: 10.11764/j.issn.1672-1926.2018.08.011 ZHU Hua, YANG Guang, YUAN Baoguo, et al. Geological conditions, resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1475–1485. doi: 10.11764/j.issn.1672-1926.2018.08.011
[2] 洪海涛,田兴旺,孙奕婷,等. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质,2020,47(1):99–110. doi: 10.12029/gc20200108 HONG Haitao, TIAN Xingwang, SUN Yiting, et al. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 2020, 47(1): 99–110. doi: 10.12029/gc20200108
[3] 徐姣,孙庆莉,段杰,等. 四川盆地东部涪陵—巴南地区茅口组储层特征及预测[J]. 天然气勘探与开发,2019,42(3):86–94. XU Jiao, SUN Qingli, DUAN Jie, et al. Predicting reservoir characteristics of Maokou Formation, Fuling-Ba’nan area, eastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 86–94.
[4] 雷林,张龙胜,熊炜. 渝东南地区茅口组气藏大石1HF井酸压工艺技术研究[J]. 油气藏评价与开发,2020,10(5):84–90. LEI Lin, ZHANG Longsheng, XIONG Wei. Acid fracturing technology of Maokou Formation in Well-Dashi-1HF, southeastern Chongqing[J]. Reservoir Evaluation and Development, 2020, 10(5): 84–90.
[5] 张倩,李年银,李长燕,等. 中国海相碳酸盐岩储层酸化压裂改造技术现状及发展趋势[J]. 特种油气藏,2020,27(2):1–7. doi: 10.3969/j.issn.1006-6535.2020.02.001 ZHANG Qian, LI Nianyin, LI Changyan, et al. Overview and trend of acid-fracturing technology for marine carbonate reservoirs in China[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 1–7. doi: 10.3969/j.issn.1006-6535.2020.02.001
[6] 钟森,潘宝风,王兴文,等. 元坝气田酸化暂堵剂研究及应用[J]. 油气藏评价与开发,2017,7(1):61–65. doi: 10.3969/j.issn.2095-1426.2017.01.012 ZHONG Sen, PAN Baofeng, WANG Xingwen, et al. Research and application of acidification temporary plugging agent in Yuanba Gas Field[J]. Reservoir Evaluation and Development, 2017, 7(1): 61–65. doi: 10.3969/j.issn.2095-1426.2017.01.012
[7] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111. LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.
[8] 林永茂,何颂根,杨永华,等. 喷砂射孔降破技术在超深海相碳酸盐岩的应用[J]. 断块油气田,2019,26(5):653–656. LIN Yongmao, HE Songgen, YANG Yonghua, et al. Application of sandblast perforation in ultra-deep marine carbonate reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 653–656.
[9] 何颂根,龙永平,李永明,等. 超深海相碳酸盐岩储层可压性主控因素[J]. 断块油气田,2020,27(5):573–578. HE Songgen, LONG Yongping, LI Yongming, et al. Main controlling factors of fracability in ultra-deep marine carbonate reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 573–578.
[10] 储铭汇. 致密碳酸盐岩储层复合缝网酸压技术研究及矿场实践: 以大牛地气田下古生界马五5碳酸盐岩储层为例[J]. 石油钻采工艺,2017,39(2):237–243. CHU Minghui. Study on composite fracture-network acid fracturing technology for tight carbonate reservoirs and its field application: a case study on Mawu5 carbonate reservoir of Lower Paleozoic in Daniudi Gasfield[J]. Oil Drilling & Production Technology, 2017, 39(2): 237–243.
[11] 李耕. 胶凝酸稠化剂在方解石中的滞留伤害研究[D]. 成都: 西南石油大学, 2017. LI Geng. A study on retention of gelled acid thickener in calcite[D]. Chengdu: Southwest Petroleum University, 2017.
[12] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发,2019,46(3):552–558. JIAO Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552–558.
[13] 侯帆,许艳艳,张艾,等. 超深高温碳酸盐岩自生酸深穿透酸压工艺研究与应用[J]. 钻采工艺,2018,41(1):35–37. doi: 10.3969/J.ISSN.1006-768X.2018.01.11 HOU Fan, XU Yanyan, ZHANG Ai, et al. Research and application of deep-penetration acid-fracturing by authigenic acid in extra-deep high-temperature carbonate rocks[J]. Drilling & Production Technology, 2018, 41(1): 35–37. doi: 10.3969/J.ISSN.1006-768X.2018.01.11
[14] 刘壮,郭建春,马辉运,等. 提升高温气井酸压有效缝长方法:以川西地区栖霞组为例[J]. 天然气地球科学,2019,30(12):1694–1700. doi: 10.11764/j.issn.1672-1926.2019.12.005 LIU Zhuang, GUO Jianchun, MA Huiyun, et al. Simulation study of the approach to enhance acid penetration distance in high temperature gas well: case study of Qixia Formation, western Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1694–1700. doi: 10.11764/j.issn.1672-1926.2019.12.005
[15] 胡文庭,何晓波,李楠,等. 塔河油田外围超深碳酸盐岩储层深度酸压改造技术研究与应用[J]. 石油地质与工程,2015,29(1):115–117. doi: 10.3969/j.issn.1673-8217.2015.01.036 HU Wenting, HE Xiaobo, LI Nan, et al. Study and application of deep acid fracturing technology for ultradeep carbonate reservoir in the periphery of Tahe Oilfield[J]. Petroleum Geology and Engineering, 2015, 29(1): 115–117. doi: 10.3969/j.issn.1673-8217.2015.01.036
[16] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058 JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
[17] 张朝举. 川东北海相碳酸盐岩气藏酸化压裂技术及应用研究[D]. 成都: 西南石油大学, 2009. ZHANG Chaoju. The technology and application of marine carbonate gas reservoir acid fracturing in northeast Sichuan[D]. Chengdu: Southwest Petroleum University, 2009.
[18] 郭建春,苟波,秦楠,等. 深层碳酸盐岩储层改造理念的革新:立体酸压技术[J]. 天然气工业,2020,40(2):61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007 GUO Jianchun, GOU Bo, QIN Nan, et al. An innovative concept on deep carbonate reservoir stimulation: three-dimensional acid fracturing technology[J]. Natural Gas Industry, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007
[19] 安娜,罗攀登,李永寿,等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术,2020,48(2):93–97. doi: 10.11911/syztjs.2020017 AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93–97. doi: 10.11911/syztjs.2020017
[20] 张搏,李晓,王宇. 排量对水力压裂网络扩展影响的试验研究[J]. 工程地质学报,2018,26(6):1516–1522. ZHANG Bo, LI Xiao, WANG Yu. Experimental study on effect of pump rate on fracture network propagation[J]. Journal of Engineering Geology, 2018, 26(6): 1516–1522.
[21] 邓鹏. 顺北碳酸盐岩酸化压裂试验与裂缝特征研究[D]. 重庆: 重庆大学, 2019. DENG Peng. Experimental investigation on acidizing fracturing and crack characteristics of carbonate rocks in Block Shunbei[D]. Chongqing: Chongqing University, 2019.
[22] 蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665. CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
[23] 马淑芬. 多级交替注入闭合酸压设计模拟与应用[D]. 成都: 西南石油大学, 2012. MA Shufen. Multistage alternate acid fracturing design simulation and application[D]. Chengdu: Southwest Petroleum University, 2012.