基于早期返排历史数据的水平井分段压裂效果评价方法

虞绍永

虞绍永. 基于早期返排历史数据的水平井分段压裂效果评价方法[J]. 石油钻探技术, 2021, 49(6): 1-7. DOI: 10.11911/syztjs.2021136
引用本文: 虞绍永. 基于早期返排历史数据的水平井分段压裂效果评价方法[J]. 石油钻探技术, 2021, 49(6): 1-7. DOI: 10.11911/syztjs.2021136
YU Shaoyong. Post-Frac Evaluation of Multi-Stage Fracturing on Horizontal Wells Based on Early Flowback History[J]. Petroleum Drilling Techniques, 2021, 49(6): 1-7. DOI: 10.11911/syztjs.2021136
Citation: YU Shaoyong. Post-Frac Evaluation of Multi-Stage Fracturing on Horizontal Wells Based on Early Flowback History[J]. Petroleum Drilling Techniques, 2021, 49(6): 1-7. DOI: 10.11911/syztjs.2021136

基于早期返排历史数据的水平井分段压裂效果评价方法

详细信息
    作者简介:

    虞绍永(1965—),男,加拿大籍华人,1984年毕业于华东石油学院采油专业,1991年获石油大学(北京)石油工程专业博士学位,达坦能源集团油气藏工程首席科学家,国际石油工程评价委员会(SPEE)委员,中国石油大学(华东)客座教授,主要从事非常规油气藏压裂评价、储量评估、产量预测等理论研究及现场施工工作。系本刊编委。E-mail: syu@tartansh.com

  • 中图分类号: 357.1+4

Post-Frac Evaluation of Multi-Stage Fracturing on Horizontal Wells Based on Early Flowback History

  • 摘要: 压裂液早期返排历史数据可用于评价水平井分段压裂效果,而有效裂缝孔隙体积是反映压裂效果的重要参数,但目前基于压裂液返排历史数据的有效裂缝孔隙体积计算方法存在准确性不高的问题。为此,基于北美最新的基于返排历史数据计算初始有效裂缝孔隙体积的研究成果,应用产量不稳定试井中的流动物质平衡方法,结合传统的产量递减方法,提出了一种利用返排历史数据定量求取有效裂缝孔隙体积的方法,并以国内某口分段压裂的致密油水平井为例,详细介绍了该方法的计算分析过程,计算发现,仅有21%的注入压裂液对裂缝导流能力有贡献。研究结果表明,该方法能有效提高有效裂缝孔隙体积计算结果的准确性,可以对水平井分段压裂效果进行正确评价。
    Abstract: The early flowback history data of fracturing fluid can be used to evaluate multi-stage fracturing effect for horizontal wells, and the effective fracture pore volume is a critical parameter to reflect the fracturing effectiveness. However, current calculation methods of effective fracture pore volume based on the fracturing fluid flowback history shows low accuracy. This paper presents a new method for quantitatively calculating the effective fracture pore volume based on flowback history. On the bases of the latest methodology in North America, the method uses the flowing material balance method of rate transient analysis (RTA) and is combined with a traditional production decline method. Its calculation and analysis process is introduced in detail based on a domestic multi-stage fracturing horizontal tight oil well. The calculation results show that only 21% of the injected fracturing fluid contributes to the fracture conductivity. The results show that the new method can effectively improve the calculation accuracy of the effective fracture pore volume and implement correct evaluation of multi-stage fracturing effect for horizontal wells.
  • 图  1   压裂液返排期 3 个阶段的主要特征示意

    Figure  1.   Main characteristics of the three phases during the flowback of fracturing fluid

    图  2   北美某水平井的驱替指数因子随返排时间的变化[11]

    Figure  2.   Variation of displacement index with flowback time for a well in North America[11]

    图  3   压裂液累计返排量与产量的关系

    Figure  3.   Variation of cumulative fracturing fluid flowback with production

    图  4   压裂液返排主要流动特征示意及特征诊断图

    Figure  4.   Main flow characteristics and diagnostic plot of the fracturing fluid flowback

    图  5   Aguilera等人的裂缝压缩系数图版[16]

    Figure  5.   Type curves for fracture compressibility coefficient by Aguilera et al.[16]

    图  6   压裂液返排历史的流动物质平衡分析示意

    Figure  6.   Flowing material balance analysis of fracturing fluid flowback history

    图  7   水平井A的压裂液返排历史示意

    Figure  7.   Fracturing fluid flowback history of horizontal well A

    图  8   水平井A的压裂液返排量递减分析结果

    Figure  8.   Decline analysis of fracturing fluid flowback of horizontal well A

    图  9   水平井A的压裂液返排流动特征分析诊断图

    Figure  9.   Flow characteristic diagnostic plot of fracturing fluid flowback of horizontal well A

    图  10   水平井A的压裂液返排分析特种曲线

    Figure  10.   Special curve of the fracturing fluid flowback for horizontal well A

    图  11   水平井A的压裂液返排期流动物质平衡分析图

    Figure  11.   Flowing material balance analysis of the fracturing fluid flowback for horizontal well A

  • [1]

    MATTAR L, ANDERSON D, STOTTS G. Dynamic material balance: oil or gas-in-place without shut-ins[R]. PETSOC-06-11-TN, 2006.

    [2]

    ARPS J J. Analysis of decline curves[J]. Transactions of the AIME, 1945, 160(1): 228–247.

    [3]

    MAJID Ali Abbasi, DEHGHANPOUR H, HAWKES R V. Flowback analysis for fracture characterization[R]. SPE 162661, 2012.

    [4]

    MAJID Ali Abbasi, EZULIKE D O, DEHGHANPOUR H, et al. A comparative study of flowback rate and pressure transient behavior in multifractured horizontal wells completed in tight gas and oil reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 17: 82–93. doi: 10.1016/j.jngse.2013.12.007

    [5]

    EZULIKE D O, DEHGHANPOUR H. Modelling flowback as a transient two-phase depletion process[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 258–278. doi: 10.1016/j.jngse.2014.05.004

    [6]

    EZULIKE D O, DEHGHANPOUR H, VIRUES C, et al. Flowback fracture closure: a key factor for estimating effective pore volume[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(4): 567–582.

    [7]

    FU Y, DEHGHANPOUR H, EZULIKE D O, et al. Estimating effective fracture pore volume from flowback data and evaluating its relationship to design parameters of multistage-fracture completion[J]. SPE Production & Operations, 2017, 32(4): 423–439.

    [8]

    XU Y, ADEFIDIPE O A, DEHGHANPOUR H. Estimating fracture volume using flowback data from the Horn River Basin: a material balance approach[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 253–270. doi: 10.1016/j.jngse.2015.04.036

    [9]

    XU Y, ADEFIDIPE O A, DEHGHANPOUR H. A flowing material balance equation for two-phase flowback analysis[J]. Journal of Petroleum Science and Engineering, 2016, 142: 170–185. doi: 10.1016/j.petrol.2016.01.018

    [10]

    XU Y, DEHGHANPOUR H, EZULIKE O, et al. Effectiveness and time variation of induced fracture volume: lessons from water flowback analysis[J]. Fuel, 210: 844–858.

    [11]

    FU Y, DEHGHANPOUR H, MOTEALLEH S, et al. Evaluating fracture volume loss during flowback and its relationship to choke size: fastback vs. slowback[J]. SPE Production & Operations, 2018, 34(3): 615–624.

    [12]

    BAI B, GOODWIN S, CARLSON K. Modeling of frac flowback and produced water volume from Wattenberg oil and gas field[J]. Journal of Petroleum Science and Engineering, 2013, 108: 383–392. doi: 10.1016/j.petrol.2013.05.003

    [13]

    SABBIR H, EZULIKE O, FU Y, et al. Average fracture compressibility from flowback data[J]. SPE Production & Operations, 2021, 36(3): 516–529.

    [14] 虞绍永. 页岩及致密油气藏工程方法[M]. 北京: 石油工业出版社, 2018.

    YU Shaoyong. Shale and tight reservoirs engineering[M]. Beijing: Petroleum Industry Press, 2018.

    [15]

    CLARKSON C R, WILLIAMS-KOVACS J D. A new method for modeling multi-phase flowback of multi-fractured horizontal tight oil wells to determine hydraulic fracture properties[R]. SPE 166214, 2013.

    [16]

    AGUILERA R. Recovery factors and reserves in naturally fractured reservoirs[R]. PETSOC-99-07-DA, 1999.

    [17]

    WILLIAMS-KOVACS J D, CLARKSON C R. Stochastic modeling of multi-phase flowback from multi-fractured horizontal tight oil wells[R]. SPE 167232, 2013.

    [18]

    WILLIAMS-KOVACS J D, CLARKSON C R, ZANGANEH B. Case studies in quantitative flowback analysis[R]. SPE 175983, 2015.

图(11)
计量
  • 文章访问数:  629
  • HTML全文浏览量:  294
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2021-11-24

目录

    /

    返回文章
    返回