Investigation of the Factors that Influence EM-MWD Signal Transmission in Drill Strings
-
摘要: 在现有电磁随钻测量(EM-MWD)系统中,钻柱是重要的EM-MWD信号传输信道。为深入了解影响EM-MWD信号在钻柱中传输效果的因素,基于等效传输线法对EM-MWD信号信道进行了建模,并使用Ansys软件进行了有限元计算,分析了地层分层情况下不同规格钻柱在交变电磁场中传输的能量损耗以及套管对EM-MWD信号传输的影响规律。研究发现:EM-MWD信号在钻柱中的能量损耗会随着功率和频率增大而增加,当信号频率超过100 Hz时损耗增加更加明显;不同规格的钻柱传输信号的效果不同,但当钻柱壁厚与外径的比为0.08~0.20时,EM-MWD信号传输效果较好;在钻柱上加套管会对EM-MWD信号的传输产生屏蔽作用,影响传输效果,不过当井下EM-MWD信号的发射频率在50 Hz以下时,套管的影响较小。研究结果更加明确了钻柱自身属性对EM-MWD信号传输的影响,可为EM-MWD系统的改进和设计提供参考。Abstract: In electromagnetic measurement while drilling (EM-MWD) systems, drill strings are important channels for EM-MWD signal transmission. For a better understanding of the factors that influence the EM-MWD signal transmission effect in drill strings, the equivalent transmission line method was used to model the EM-MWD signal channel, and the finite element calculation was made using ANSYS software. With the analysis of strata division, research was conducted on the energy loss of signal transmission by drill strings with different specifications in an alternating electromagnetic field and the influence law of casing on EM-MWD signal transmission. Several findings were obtained in this paper. The increase in power and frequency would enhance the energy loss of EM-MWD signal in drill strings, and when the signal frequency exceeded 100 Hz, the loss grew more evidently. The transmission effect varied for different drill strings, but it was better when the ratio of drill string wall thickness to outer diameter was 0.08–0.20. Adding casing on the drill string would shield the transmission of EM-MWD signal and affect the transmission effect. However, when the frequency of downhole EM-MWD signal was below 50 Hz, the impact of casing is small. The research results further clarified the influence of the drill string's own properties on the EM-MWD signal transmission, which can provide a reference for the improvement and design of the EM-MWD system.
-
天然气水合物(即可燃冰)是资源量丰富的高效清洁能源,是未来理想的战略接替能源之一[1-7],多个国家制定了天然气水合物的国家研究与开发计划,并列入了国家未来能源战略规划。天然气水合物勘探开发中,钻探取样是评估天然气水合物的分布、产状、赋存形态和饱和度等的重要手段,对于后续开发方案的制定有重要意义。
天然气水合物是类冰状物质,对温度压力的变化很敏感,受到扰动易挥发。2007年和2013年,国内采用国外公司的冲击式保压取样工具FPC和旋转式保压取样工具FRPC进行了天然气水合物勘探取样,证实了我国蕴藏有丰富的天然气水合物资源。中石化胜利石油工程有限公司钻井工艺研究院利用在井下工具和钻探取心技术方面的优势,于2007年开始进行天然气水合物钻探取样工具研制和取样技术研究,与国内多家天然气水合物领域的科研机构合作,突破了密封阀保压、低温保温关键技术;2017年,依托海洋石油708深水工程勘察船在天然气水合物赋存区成功取得保压样品,为我国海底天然气水合物自主勘探取样提供了技术支撑[8]。目前,国内虽然在天然气水合物钻探取样方面取得了一些技术进步,也针对研究过程中遇到的各种技术难点提出了解决措施,但这些措施不是唯一的解决方案。为此,笔者分析了取样工艺、取样工具尺寸确定、低温保温、密封阀和取样作业方式方面的技术难点,以2017年南海北部成功实施的保压取样方案为基础,提出了相应的技术措施;并分析总结了研发天然气水合物钻探取样技术遇到的技术难点,为今后取样技术的进一步发展和完善提供了技术参考。
1. 取样技术需求
1.1 南海环境的需求
南海属热带海洋季风气候,台风活动频繁、强度大、活动时间长,每月都有可能出现台风。南海大部分海区处于热带,加之受海洋影响,全年温度高、湿度大。南海大部分地区的全年相对湿度较大,年平均日最大相对湿度在80%以上;海流活动较强,有季风海流、黑潮暖流、上升流和潮流等。南海海域水深、域广、风大,既有交替的季风,又有猛烈的台风,海浪之大为中国陆缘海之冠。
受季风和台风等的影响,在南海能进行平稳作业的时间窗口较小,并且作业时间也有限。2017年海底水合物取样的时间为4月上旬至5月上旬,处于季风过渡期,期间风向多变,海洋石油708深水工程勘察船的抗风力不低于12级,保证了在9级风海况下的安全航行,采用动力定位不断调整船头方向,保证了作业安全;配备的主动和被动深度补偿装置弥补了海流活动的影响。取样工具出井口后迅速采取水域低温冷却措施,避免了高温造成天然气水合物迅速分解;取样设备采用不锈钢材料,并及时进行保养,防止了海洋高温潮湿环境对取样设备造成锈蚀。
1.2 天然气水合物性质的需求
天然气水合物是由天然气与水在高压低温条件下形成的类冰状结晶物质[9]。其生成的温度条件为0~10 ℃,超过20 ℃便会分解;在0 ℃条件下,压力达到3.0 MPa就可生成。海底温度一般在2~4 ℃,水深300 m处的压力可以达到3.0 MPa,并且压力越高,天然气水合物越不容易分解,因此深海环境适合天然气水合物的生成和保存。
天然气水合物依赖巨厚海水层的压力来维持其固体状态,其分布范围为海底到海底之下 1000 m以浅;深度继续增大后,由于地层温度升高,其固体状态遭到破坏而难以存在。南海北部海域海底沉积层的主要成分为黏土,夹杂少量细砂、粉砂,表层沉积物为淤泥质黏土,类冰状天然气水合物赋存在沉积层中,在海底水压作用下与未成岩的沉积层结合在一起呈固体状态;但一旦被扰动,取出到海面,因为压力降低会迅速分解,所以采用常规取样方式获取天然气水合物样品十分困难,需要在保温保压条件下才能取到。2017年进行天然气水合物取样时海水深度1310 m,取样层位在泥线以下100~123 m,取得的保压样品为泥质粉砂。
2. 取样工艺现状
由于天然气水合物赋存于深海,采用钻井平台取样,作业成本太高,因此一般采用钻探船取样。虽然钻探船的作业成本较低,运动比较灵活,但受海洋环境影响很大,而且不能像钻井平台一样下入隔水管和固定井口,钻井液无法形成循环体系,只能采用钻杆在海底浅层进行裸眼作业。这也导致不能采用常规起钻方式进行取样作业,因为一旦起钻,在深海要再找到井口将非常困难,只能将钻杆做为取样通道进行快速取样。
2017年,天然气水合物取样采用的海洋石油708深水工程勘察船,除了具有动力定位、主动和被动深度补偿装置外,为保障取样作业顺利完成,还在海底下放了海底基座,取样过程中能够抱住钻杆,尽量减少对地层的扰动。由于受勘察船尺寸和井架高度的限制,钻进时只能进行接单根作业,采用了ϕ127.0 mm钻杆,钻具组合内径不小于ϕ104.7 mm,井架有效高度36.00 m,井架前大门高度12.50 m,大钩最大工作载荷2 250 kN。
3. 取样工具现状
由于天然气水合物的特殊性和不起钻的作业方式,只能采用绳索保温保压取样方式,即取样工具从钻杆内部下入到井底,完成取样后,利用与绞车绳索连接的特殊打捞工具将取样工具提出井口,获得保温保压样品,然后快速循环该作业过程,实现连续取样。
3.1 工具尺寸
为适应海洋石油708深水工程勘察船的钻具尺寸,取样工具外径最大只能设计为101.0 mm;受密封阀门通径限制,为满足后期分析样品的要求,目前取心直径最大能够达到52.0 mm。
3.2 低温保温方式
低温保温方式有很多种,主要目的是阻断对流、传导和辐射这3种形式的传热。取样工具研发过程中,重点研究了真空被动保温、半导体制冷主动保温和填充隔热材料被动保温等3种方案,3种保温方案各有利弊。
1)真空被动保温是把保温保压筒做成双层,两层之间抽真空,切断热传导;保温保压筒外采用等离子喷涂隔热涂层(如图1所示)。保温保压筒为密封状态,可以避免热对流;太阳光隔热涂料将保温保压筒外部辐射的热能反射回去,以防止外面的热能辐射到筒内。检测结果表明,隔热涂层对太阳光热量的反射、阻隔效果非常明显,能反射太阳光线一半以上的红外线,一般情况下,喷涂隔热涂层的物体表面温度与未喷涂隔热涂层相比低10~20 ℃。试制的保温保压筒真空夹层厚2.0 mm,真空度达0.08 MPa,涂层厚0.5 mm,能保持温度尽量不变。真空被动保温的低温保温效果较好,但工艺复杂,加工难度大,且保温筒两端接头无法隔热,不可避免地会影响保温效果[10]。
2)半导体制冷主动保温是利用半导体材料的Peltier效应,在直流电通过2种不同半导体材料串联成的电偶时,电偶的两端可分别吸收热量和放出热量,可以通过改变电流大小和半导体材料N、P的元件对数控制吸热量和放热量,实现制冷的目的。制冷片内部是由上百对电偶组成的热电堆,以达到增强制冷的效果。低温保温筒就是将多组制冷片的制冷端固定在筒壁上,用蓄电池供电,使保温筒内保持低温。虽然主动制冷可以使保温筒内保持低温,且不受两端接头的影响,但制冷片的放热端要及时散热,需要增大制冷片两端温差;另外,制冷片和电池组占用了取样工具的很大空间,设计难度很大[10]。
3)填充隔热复合材料被动保温是在双层筒内填充二氧化硅气凝胶,该凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,孔隙率达80.0%~99.8%,孔洞的典型直径1~100 nm,比表面积200~1000 m2/g,密度可低至3.0 kg/m3。二氧化硅气凝胶的导热系数极低,比相应的无机绝缘材料低2~3个数量级,达到0.013~0.016 W/(m·K),低于静态空气的导热系数(0.024 W/(m·K))。采用该低温保温方式,保温材料和工具的结构都简单,其与外管喷涂隔热涂层配合。室内试验表明,在采用该低温保温方式的保温筒内装入模拟冰块,在室温(20 ℃)下,放置2.5 h后保温筒内仍有大量冰块,完全满足取样后样品从海底到甲板再进入带压转移仓所需的时间。因此,2017年天然气水合物取样使用的工具都采用该低温保温方式[10]。
3.3 密封阀
密封阀是取样工具的关键部件,关系着天然气水合物取样的成败。保温保压取样工具采用绳索取样方式,取样工具外径受钻柱内径的限制,因此增大取样直径主要就是增大密封阀的通径。目前,能够用于取样工具的密封阀主要有球阀和板阀。球阀由于有预紧力,密封性较好,但需要能使密封球旋转90°的联动结构,不论是齿轮齿条结构,还是能够与密封球产生力矩的结构,都需要较大的径向空间。板阀的活动零件只有一个密封板,结构简单相对,占用的空间也小,但没有预紧力,初始密封性较差。为增大密封保压成功率,并使取样岩心的直径尽可能较大,设计了不同结构的球阀和板阀,通过改变结构增大密封阀的通径。
3.3.1 球阀
设计了2种结构的球阀。第1种结构的球阀在上提取样管到位后,触发电控机构释放带压液体,推动齿条带动密封球轴线上的齿轮旋转90°,形成密封(见图2)。在胜利六号钻井平台泥线下38.60 m处进行了密封试验,初始压力为4.248 MPa,16.5 h后压力为4.217 MPa,仅降低了0.031 MPa,表明其密封性很好,但取样直径仅为30.0 mm[10]。
第2种结构的球阀为了增大密封球的密封通径,将推动密封球旋转的机构放在轴心线侧面,机械结构触发后,靠二者间的力矩使密封球旋转90°形成密封。该结构的球阀还处于试验阶段。
3.3.2 板阀
板阀按照结构可分为直板式密封板阀、弯月式密封板阀和相贯线式密封板阀。直板式密封板阀的板是平面板,密封面也是平面,这种板阀易加工,但通径受空间限制难以增大。弯月式密封板阀的板与工具同轴,密封面是空间锥面,虽然增大了通径,但密封圈槽难以加工,试制了几种样品,密封效果都不佳。相贯线式密封板阀的板也与工具同轴,密封面是空间曲面,虽然加工难度大,但密封圈槽能够加工(见图3)。设计的相贯线式密封板阀外径为95.0 mm,通径为60.0 mm。
相贯线式密封板阀室内密封性能试验表明,其密封效果较好,低压0.5 MPa就可以密封,压力最高测试到30.0 MPa,保持30 min后压力未降低[8]。
3.4 取样作业方式
天然气水合物取样属于深水浅层绳索取样,取样层位多为弱胶结地层,所以作业时要尽量减小对样品的扰动。对于海底淤泥质土、黏土和松散—稍密的粉土与砂土,目前主要的取样方式是靠液压匀速压入地层,这种方式对样品扰动最小,取样质量最好,可以获取无干扰的沉积物样品,但由于地层强度逐渐增大,使用范围有限[11]。坚硬的黏土、较致密的砂土和弱胶结土也是天然气水合物赋存较多的地层,这些地层可以采用液力驱动的井底冲击器、高频冲击薄壁取样管进入地层的方式(见图4),既能避免旋转取样对天然气水合物样品的扰动,又能提供较大的推动力破碎地层,而且可以用于绳索取心,因此,天然气水合物取样时使用的较多[12]。对于非常坚硬的黏土、成岩地层,可以采用旋转取样的方式,旋转取样可以靠钻杆带动取样工具旋转[13],也可以不旋转钻杆,靠井下螺杆钻具带动取样工具旋转,虽然旋转会对样品有扰动,但由于地层坚硬,影响较小。
4. 技术发展建议
2017年,海洋石油708深水工程勘察船在南海北部采用绳索提取、隔热复合材料被动保温、相贯线式密封板阀保压和液力驱动井底冲击器高频冲击取样技术,成功取得了天然气水合物样品。笔者在分析天然气水合物钻探取样技术研发中遇到的技术难点的基础上,综合考虑现有技术,提出了今后的研究方向,为技术改进和后续技术研究提供参考。
1)优选适合制造天然气水合物取样工具的材料,进一步改进工具的结构,增大绳索取心工具的取样直径,提高密封阀的初始密封性能,研发取样工具与后处理设备快速对接的配套装置,提高现有工具对地层的适应性,简化操作步骤,实现过程电动化,降低作业风险。
2)研发新保温保压技术,如注入冷冻剂提高样品的保温效果,降低温度对样品的影响,冰冻底部样品形成冰阀,实现密封保压。
3)进一步研发适用于天然气水合物样品检测的各种声、电和光学测量仪器,以测试水合物样品的组成、密度、孔隙率、渗透率和热传导性等参数,建立现场样品检测综合实验室。
5. 结束语
天然气水合物钻探取样技术的创新发展,使我国在天然气水合物这一海洋新能源领域实现了自主勘探开发,形成的技术和装备除了用于海底天然气水合物资源勘探外,还可以用于海洋石油地质勘探、海底固体矿产资源勘探、海洋环境及海洋生物科学研究等。今后,在完善现有天然气水合物钻探取样技术装备的基础上,配套现场样品检测综合实验室,将进一步提高天然气水合物钻探取样技术水平,增强我国海底天然气水合物的勘探能力,满足和支撑国家海洋高科技事业发展的需求。
-
-
[1] 陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究[J]. 石油钻探技术,2018,46(3):114–119. CHEN Xiaohui, GAO Bingtang, SONG Zhaohui. Research on downhole electromagnetic repeater transmission characteristics in ultra high resistivity gypsum-salt layers[J]. Petroleum Drilling Techniques, 2018, 46(3): 114–119.
[2] 康厚清. 煤矿井下EM-MWD仪器研制[J]. 煤矿安全,2019,50(4):135–137, 141. KANG Houqing. Development of underground electromagnetic wireless measurement while drilling instrument[J]. Safety in Coal Mines, 2019, 50(4): 135–137, 141.
[3] 熊皓,胡斌杰. 随钻测量电磁传输信道研究[J]. 地球物理学报,1997,40(3):431–441. doi: 10.3321/j.issn:0001-5733.1997.03.016 XIONG Hao, HU Binjie. Investigation of the EM channel characteristics for MWD[J]. Chinese Journal of Geophysics, 1997, 40(3): 431–441. doi: 10.3321/j.issn:0001-5733.1997.03.016
[4] 范业活,聂在平,李天禄. 随钻电磁波传输理论模型与信道特性分析[J]. 电波科学学报,2013,28(5):909–914. FAN Yehuo, NIE Zaiping, LI Tianlu. EM channel theory model and characteristics analysis for MWD[J]. Chinese Journal of Radio Science, 2013, 28(5): 909–914.
[5] 邵春,韩坚,褚志伟,等. 基于ANSYS的接地发射电极对双向EM-MWD下传信号的影响分析[J]. 煤田地质与勘探,2019,47(1):206–210. doi: 10.3969/j.issn.1001-1986.2019.01.032 SHAO Chun, HAN Jian, CHU Zhiwei, et al. Analysis on influence of ground transmitting electrode on bidirectional EM-MWD signal transmission based on ANSYS[J]. Coal Geology & Exploration, 2019, 47(1): 206–210. doi: 10.3969/j.issn.1001-1986.2019.01.032
[6] MUGOYA R, YAO Aiguo, DE LA PAIX M J. The study of signal propagation in electromagnetic-measurement while drilling (EM-MWD) telemetry systems[J]. Journal of American Science, 2011, 7(3): 153–157.
[7] 刘科满, 仵杰. 电磁随钻传输理论与应用[M]. 北京: 科学出版社, 2020: 27–31. LIU Keman, WU Jie. Theory and application of electromagnetic transmission while drilling[M]. Beijing: Science Press, 2020: 27–31.
[8] FAN Yehuo, NIE Zaiping, SUN Xiangyang. Theoretical study on the while drilling electromagnetic signal transmission of horizontal well[C]//Proceedings of 2017 2nd International Conference on Software, Multimedia and Communication Engineering (SMCE 2017), Shanghai: Science and Engineering Research Center, 2017: 248–253.
[9] 刘伟,黄崇君,连太炜. 电磁波随钻测量仪器测量效果影响因子分析[J]. 钻采工艺,2017,40(5):11–14. doi: 10.3969/J.ISSN.1006-768X.2017.05.04 LIU Wei, HUANG Chongjun, LIAN Taiwei. Numerical analysis of factors affecting EM-MWD electromagnetic signal attenuation[J]. Drilling & Production Technology, 2017, 40(5): 11–14. doi: 10.3969/J.ISSN.1006-768X.2017.05.04
[10] 肖俊. 涪陵工区应用电磁波随钻仪器(EM-MWD)的探讨[J]. 江汉石油科技,2017(3):47–50, 68. XIAO Jun. Discussion on application of electromagnetic wave while-drilling instrument (EM-MWD) in Fuling working area[J]. Jianghan Petroleum Science and Technology, 2017(3): 47–50, 68.
[11] 王家豪. 煤矿井下电磁波随钻测量系统关键技术研究[D]. 武汉: 中国地质大学, 2015. WANG Jiahao. Research on key technology of EM-MWD in underground coal mine[D]. Wuhan: China University of Geosciences, 2015.
[12] 张东旭,白璟,谢意,等. 电磁波接力传输随钻测量系统研制与应用[J]. 天然气工业,2014,34(2):76–80. doi: 10.3787/j.issn.1000-0976.2014.02.012 ZHANG Dongxu, BAI Jing, XIE Yi, et al. Development and application of an electromagnetic relay transmission MWD system[J]. Natural Gas Industry, 2014, 34(2): 76–80. doi: 10.3787/j.issn.1000-0976.2014.02.012
[13] 王家豪,董浩斌,石智军,等. 煤矿井下随钻测量电磁传输信道建模[J]. 煤炭学报,2015,40(7):1705–1710. WANG Jiahao, DONG Haobin, SHI Zhijun, et al. Modeling an EM channel for MWD in underground coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1705–1710.
[14] 李辉. 随钻电磁波电阻率测井仪器响应数值模拟及应用[M]. 镇江: 江苏大学出版社, 2017: 25–29. LI Hui. Numerical simulation and application on electromagnetic wave resistivity logging-while-drilling tool responses[M]. Zhenjiang: Jiangsu University Press, 2017: 25–29.
[15] 马西奎. 电磁场有限元与解析结合解法[M]. 北京: 科学出版社, 2016: 68–71. MA Xikui. Finite element and analytical solution of electromagnetic field[M]. Beijing: Science Press, 2016: 68–71.
[16] 李凯. 分层介质中的电磁场和电磁波[M]. 杭州: 浙江大学出版社, 2010: 21–25. LI Kai. Fields and waves in layered media[M]. Hangzhou: Zhejiang University Press, 2010: 21–25.
[17] 文盛乐,李泽军,杨江河. 导电介质内传播电磁波特性研究[J]. 湖南文理学院学报(自然科学版),2006,18(1):19–22. WEN Shengle, LI Zejun, YANG Jianghe. Discussion of propagation electromagnetic wave in conductive medium[J]. Journal of Hunan University of Arts and Science(Natural Science Edition), 2006, 18(1): 19–22.
[18] 陈庭根, 管志川. 钻井工程理论与技术[M]. 东营: 中国石油大学出版社, 2000: 74–75. CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2000: 74–75.
[19] LIU Keman. Model and control method of a downhole electromagnetic transmitter for EM-MWD system[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107210. doi: 10.1016/j.petrol.2020.107210
-
期刊类型引用(3)
1. 刘毅, 陆正元, 吕晶, 谢润成. 主成分分析法在泥页岩地层岩性识别中的应用. 断块油气田. 2017(03): 360-363 . 百度学术
2. 张伟, 冯进, 胡文亮, 夏瑜. L油田古近系油藏含水率计算方法及其应用. 石油钻探技术. 2016(01): 105-110 . 本站查看
3. 张君龙, 汪爱云, 何香香. 古城地区碳酸盐岩岩性及微相测井识别方法. 石油钻探技术. 2016(03): 121-126 . 本站查看
其他类型引用(1)