CO2响应性增强泡沫体系室内试验研究

吕伟, 刘笑春, 白海龙, 彭明兰

吕伟, 刘笑春, 白海龙, 彭明兰. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术, 2021, 49(5): 88-93. DOI: 10.11911/syztjs.2021119
引用本文: 吕伟, 刘笑春, 白海龙, 彭明兰. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术, 2021, 49(5): 88-93. DOI: 10.11911/syztjs.2021119
LYU Wei, LIU Xiaochun, BAI Hailong, PENG Minglan. Laboratory Test Study of CO2 Responsive Enhanced Foam System[J]. Petroleum Drilling Techniques, 2021, 49(5): 88-93. DOI: 10.11911/syztjs.2021119
Citation: LYU Wei, LIU Xiaochun, BAI Hailong, PENG Minglan. Laboratory Test Study of CO2 Responsive Enhanced Foam System[J]. Petroleum Drilling Techniques, 2021, 49(5): 88-93. DOI: 10.11911/syztjs.2021119

CO2响应性增强泡沫体系室内试验研究

基金项目: 国家科技重大专项“长庆低渗透砂岩油藏CO2驱油与埋存注采工艺配套”(编号:2016ZX05056002)、中国石油重大科技专项“CO2驱油与埋存注采配套技术研究”(编号:2014E-3603)联合资助
详细信息
    作者简介:

    吕伟(1976—),男,甘肃宁县人,1999年毕业于西安交通大学高分子材料与工程专业,2006年获西安石油大学应用化学专业硕士学位,高级工程师,主要从事提高采收率技术方面的研究工作。E-mail: lvw_cq@petrochina.com.cn。

  • 中图分类号: TE357.7

Laboratory Test Study of CO2 Responsive Enhanced Foam System

  • 摘要: 为解决低渗透油藏CO2驱气体窜流影响开发效果的问题,以泡沫综合值为评价指标,通过搅拌法优选发泡剂,建立了CO2响应性增强泡沫体系,配方为0.1%发泡剂AOS+4.0%小分子胺+水。该体系在接触CO2前黏度与水接近,与CO2作用后黏度可升高18倍以上。性能评价结果显示:CO2响应性增强泡沫体系的泡沫综合值可达到常规泡沫体系的11倍以上;具有明显的剪切稀释特性,流变方程符合幂律流体流变模式;比常规泡沫体系具有更强的黏弹性,可以封堵优势渗流通道,抑制非均质低渗透油藏CO2驱气体窜流,提高低渗透油藏CO2驱的采收率。研究结果表明,CO2响应性增强泡沫体系可以解决低渗透油藏CO2气体窜流问题,提高CO2驱的开发效果。
    Abstract: The development effect of CO2 flooding in low permeability reservoirs is affected by the gas channeling. In response to this problem, the foam comprehensive value was used as the evaluation index to establish CO2 responsive enhanced foam system by optimizing foaming agent with stirring method. The formula was 0.1% foaming agent AOS(alpha olefin sulfonate) adding 4.0% small molecule amine and water. Its viscosity, which was close to water viscosity before exposure to CO2, increased by more than 18 times after reaction with CO2. The results of performance evaluation indicated the foam comprehensive value of the proposed CO2 responsive enhanced foam system could reach more than 11 times those of conventional foam systems, with obvious shear-thinning characteristics. The rheological equation conformed to the rheological model of power-law fluids. With stronger viscoelasticity than those of conventional foam systems, the proposed foam system could also be used to plug the dominant seepage channels to inhibit the gas channeling during CO2 flooding in heterogeneous low permeability reservoirs and ultimately to enhance the oil recovery in such reservoirs. The research results showed that the CO2 responsive enhanced foam system could solve the problem of gas channeling and improve the development effect of CO2 flooding in low permeability reservoirs.
  • 随着油气勘探开发不断深入,水平井应用越来越广泛。为了提高水平井储层的钻遇率、降低钻井风险,需要采用地质导向技术,而随钻测井技术是地质导向技术的重要组成部分[1-7]。利用随钻声波测井技术实时测量的地层速度可以识别超压地层,降低钻井风险[8]。目前,商业化的随钻声波测井仪发展经历了2代:第一代随钻声波测井仪能实时测量地层纵波速度,例如斯伦贝谢公司的Isonic/sonicVISION、哈里伯顿公司的CLSS和威德福公司的ShockWave;第二代随钻声波测井仪利用四极子声源实现了地层横波速度的实时测量,如斯伦贝谢公司的SonicScope、贝克休斯公司的APX/SoundTrack和哈里伯顿公司的QBAT。国内的随钻声波测井技术研究起步较晚,相关科研单位进行了随钻声波仪设计及数据处理等相关研究[9-13],目前,仅中海油田服务股份有限公司于2015年推出了随钻单极子声波测井仪(MAST),实现了国产随钻声波测井仪的商业化应用[14],但这仅达到了国外第一代随钻声波测井仪的技术水平,与国际先进技术水平还有一定的差距。唐晓明等人[15]于2002年提出了利用四极子声源实现随钻地层横波速度测量的理论方法,但是研制可以实际应用的随钻四极声波测井仪尚需突破很多关键技术,如传感器技术、钻铤隔声技术、井下电路设计技术、井下信号实时处理及上传技术和波形数据处理方法等[16-19]

    笔者在随钻单极子声波测井仪的基础上,采用低频大功率的随钻四极子发射换能器、高性能的隔声体和高灵敏度的随钻声波接收声系[20-21],设计了随钻四极子声波测井仪(QUAST)。现场实钻测量表明,该测井仪可测得高质量的地层横波信息。

    随钻四极子声波测井仪(QUAST)由Drilog®随钻测井系统[22]和井下部分组成。井下部分由接收电路、扶正器、接收声系、隔声体、发射声系、扶正器及发射电路组成,如图1所示。发射声系由一组单极子发射换能器和一组四极子发射换能器组成。隔声体采用了一种新型的隔声结构,其外表面光滑,内壁刻有周期性凹槽,测井仪可以测得高质量的地层波信号。接收声系采用了阵列接收方式,即每条接收声系内安装8个等间隔的接收换能器,相邻2个接收换能器的间距为0.152 4 m,仪器外壳圆周方向上每隔90°安装一条接收声系,因此该测井仪共有32个接收换能器。为了防止钻井液对传感器冲蚀,发射换能器及接收声系外面均安装了金属薄壁罩。为确保钻井过程中随钻四极子声波测井仪居中,发射声系上面和接收声系下面都安装了扶正器。发射电路和接收电路安装在仪器外壳内部,通过过线杆实现通讯。随钻四极子声波测井仪有3种测量模式,分别为单极子全波模式、四极子横波模式及低频斯通利波模式。

    图  1  随钻四极子声波测井仪井下部分的结构
    Figure  1.  Downhole structure of QUAST

    随钻四极子声波测井仪(QUAST)具有以下技术特点:1)Drilog®随钻测井地面系统可实时显示慢度相关投影图,且可以实时提取可靠的纵波、横波慢度曲线,为现场工程师第一时间提供地层地质信息;2)采用低频单极激励可以测得高质量的斯通利波信号,可评价井壁裂缝发育程度和反演地层渗透率;3)四极子横波模式采用低频激发技术,可有效避免四极子钻铤螺旋波对测量信号的影响,在超软地层中也可以测得高质量横波信号;4)利用四极子横波频散校正技术,可提取到地层横波的最大慢度为2 300 μs/m;5)可在套管井进行测量,评价水泥胶结质量或计算水泥返高;6)配置了8 GB 的存储器,记录速度可以达到1次/s,所有模式的测量数据都可记录存储起来,最长工作时间可达200 h;7)QUAST可与电阻率、中子、密度等其他随钻测井仪组合,随钻声波测井资料可进行多种应用,包括地震相关分析、确定孔隙压力、复杂岩性测井解释及岩石力学特性分析等。

    随钻声波发射换能器是随钻声波测井仪的核心部件,其涉及压电晶体理论设计、晶体的真空封装工艺和耐高温高压技术等,目前国内外没有该方面的公开资料。笔者以一种圆弧状压电晶体为核心,采用环氧树脂或橡胶作为封装材料,应用了真空封装工艺,研制了一种耐高温高压的随钻声波发射换能器,如图2所示。随钻单极子换能器由2个半圆环组成,随钻四极子换能器由4个四分之一圆环组成。每片圆环有2条引线,分别对应压电晶体的正负极,供电激励时采用不同的组合方式可产生单极子声源、偶极子声源或四极子声源。该换能器最高工作压力140 MPa,最高工作温度150 ℃。

    图  2  随钻声波发射换能器
    Figure  2.  Transmitting transducers while drilling

    孙志峰等人[23]对圆弧状压电晶体随钻声波换能器进行了理论分析,笔者在此主要分析随钻声波换能器的实测效果。把随钻单极子换能器和随钻四极子换能器分别安装在测试短钻铤的凹槽内,并进行机械固定,放入消声水池进行声学测试,随钻单极子和四极子换能器发射电压级曲线和水平指向性曲线分别如图3图4所示。

    图  3  随钻声波换能器发射电压级
    Figure  3.  Transmitting voltage level of transmitting transducers while drilling
    图  4  随钻声波换能器指向性曲线
    Figure  4.  Directivity of transmitting transducers while drilling

    图3可以看出:随钻单极子换能器的谐振频率在10 kHz附近,此时发射电压级较高,约130 dB;四极子换能器在4 kHz附近没有发生谐振,发射电压级较低,约95 dB,只能采用高电压受迫激励方式产生较强的激发能量。测量时,随钻单极子和四极子换能器水平指向曲线的激发频率分别为10和4 kHz。

    图4可以看出:随钻单极子换能器的声压幅度在0°~360°变化不大,其指向性接近一个圆形,符合单极子声场辐射特性;随钻四极子换能器的声压幅度在59.1°、174.2°、260.2°和353.1°处有极大值,而在24.9°、126.5°、220.0°和319.2°处声压幅度有极小值,指向性曲线近似2个正交的“∞”形,符合四极子声源的辐射特性。

    随钻声波测井仪工作时,声源激发出一种沿着钻铤传播的导波[24],若不作隔声处理,钻铤波将会在测量信号中占主导地位,从而严重干扰地层波速的测量。迄今为止,所有的随钻声波隔声都采用在发射和接收换能器之间周期性刻槽的方法来阻隔沿着钻铤传播的波[25-26],但都是采用经验方法或数值模拟方法设计刻槽方案[27]。笔者采用在外表面光滑钻铤内部刻周期性凹槽的方法制作隔声体,其结构如图5所示。隔声体中间部位安装过线杆,过线杆与隔声体内壁之间是钻井液通道。

    图  5  隔声体结构示意
    Figure  5.  Structure of the isolator

    笔者采用柱坐标系下的三维有限差分方法,模拟了隔声体和钻铤的声场分布,得到了某时刻的声场快照。数值模拟时,隔声体和钻铤居中放置在半径为0.50 m的水柱中,水柱高度4.00 m,声源为主频10 kHz的Richer子波,水柱外表面为完全吸收边界条件。图6所示为 t=580 μs和t=880 μs时隔声体、钻铤的声场快照。由图6可知,钻铤波的传播速度最快,隔声体极大地削弱了钻铤波的能量。

    图  6  隔声体和钻铤的声场快照
    Figure  6.  Acoustic field snapshots of the isolator and drill collar

    图7所示为数值模拟的隔声体和钻铤的时域波形、频谱曲线及其声衰减曲线,图7(a)和图7(b)中的黑色曲线分别为钻铤的阵列接收波形和频谱曲线,红色曲线分别为隔声体的阵列接收波形和频谱曲线。从图7(a)可以看出,隔声体会使钻铤波信号幅度明显衰减。从图7(b)可以看出,钻铤的钻铤波固有阻带为11~14 kHz,隔声体的隔声阻带为8~15 kHz。单极子声源的激发频率只需在此隔声阻带内,就可避免钻铤波对测量信号的干扰。由图7(c)可知,在隔声体的钻铤波隔声阻带内,最大隔声量可达−28 dB。

    图  7  隔声体数值模拟结果
    Figure  7.  Numerical simulation results of the isolator

    电缆多极子阵列声波测井仪的接收换能器安装在声系骨架上,骨架外围采用橡胶皮囊包裹,内部充满硅油,以保证测量时接收换能器内外压力平衡。而随钻声波测井仪的接收声系需要固定在仪器外壳上,测量时要考虑振动、隔声和压力平衡等诸多因素的影响,因此随钻声波测井仪不适于采用电缆声波测井仪的橡胶皮囊密封方式。

    笔者设计了一种金属壳的长方体状随钻声波接收声系,如图8所示,8个接收换能器采用机械方式固定在接收声系骨架上[28],相邻2个接收换能器的间距为0.152 4 m。声系骨架采用了“三明治”结构的包裹方式,以保护接收晶体及电路板;利用平衡活塞解决金属壳内外压力平衡问题。金属外壳采用异形橡胶包裹,既能起到减振作用,又能更好地隔离钻铤直达波。该设计不但解决了接收换能器安装、固定、封装和减振等难题,而且采用了模块化设计,便于安装和保养。

    图  8  随钻声波接收声系示意
    Figure  8.  Receiving acoustic system while drilling

    将随钻声波接收声系置于消声水池中进行了接收灵敏度测量,采用与标准水听器作比较的方法进行测量[29]。测量时,以4个周期的Burst 信号激励圆管状单极子发射器,电压峰峰值为200 V。为了保证换能器能够达到稳态条件,扫频范围设为5 ~40 kHz。图9所示为随钻声波接收声系在消声水池测量的接收灵敏度曲线。从图9可以看出,接收声系在频率为10 kHz时的接收灵敏度最高,为−201.5 dB,在频率为19 kHz时的接收灵敏度最低,为−206.8 dB,灵敏度起伏量为5.3 dB。该接收声系在整个频率范围内,接收灵敏度幅度变化很小,非常有利于单极子或四极子等不同频率信号的接收。

    图  9  随钻声波接收声系接收灵敏度曲线
    Figure  9.  Sensitivity curve of receiving acoustic system while drilling

    新疆轮台KS3-B1Sa井1 495.00~1 615.00 m井段进行了随钻四极子声波测井仪试验。钻进该井段的钻具组合为ϕ215.9 mmPDC钻头+旋转导向测量仪+随钻四极子声波测井仪+随钻电阻率测井仪+定向测量仪+工程参数测量仪+高速率钻井液传输短节,机械钻速40~60 m/h,钻井液排量1 700 L/min,井底压力约50 MPa,温度80 ℃。试验时首先将钻具组合下至井深1 495.00 m,开泵测试,地面系统显示井下随钻四极子声波测井仪工作正常,然后进行旋转导向钻进,钻至井深1 615.00 m,试验结束,起钻,读取随钻四极子声波测井仪内存中的测井数据,进行处理分析。随钻四极子声波测井仪测得的原始波形及处理分析结果如图10所示。

    图  10  随钻四极子测井仪(QUAST)实钻测量结果
    Figure  10.  Field drilling measurements of QUAST

    图10中,第1道是井下内存记录的单极子全波原始波形变密度图,从原始波形可看到钻井低频噪声信号、到时基本不随井深变化的钻铤波信号、到时较晚的低频斯通利波信号及地层波信号。随钻四极子声波测井仪的最佳隔声阻带是8~15 kHz,对原始波形进行8~15 kHz的带通滤波,得到第2道的滤波后波形和第3道的速度分析结果。从第2道可以看出,滤波后的波形纯净,无钻铤波干扰,为来自地层的声波信号;进一步进行速度分析表明,地层波信号包含纵波和横波成分,信噪比和相关性很好(见第3道)。第4道为原始四极子全波波形,可以清晰观察到随地层速度变化的低频四极子横波信号,速度分析表明,四极子横波的相关性很好(见第5道),具有明显的低频特征,无钻铤四极子波干扰信号。第6道为单极子测量的纵波、横波时差与四极子横波时差,可以看出,单极子全波测量的横波时差与四极子横波测量的时差吻合很好,这证明随钻四极子横波测量模式及时差测量结果是正确的。

    以上对随钻四极子声波测井仪现场实钻测量数据的处理分析表明,该测井仪测得的地层纵波及横波信息可靠,测量结果可为准确评价地层提供依据。

    1)介绍了随钻四极子声波测井仪(QUAST)的结构和技术特点,阐述了该测井仪传感器、隔声体及接收声系等关键部件的设计方法。现场试验结果表明,该测井仪的电路系统、机械性能和声波时差实时上传等稳定可靠。

    2)在硬地层,QUAST采用单极子全波模式可测得高质量的地层纵波及横波信号,测量结果不受钻铤波信号的影响。四极子横波模式测得横波信噪比高,波形相关性好,与单极子横波吻合,无钻铤四极子横波干扰。因此,采用四极子横波模式测井不需要对隔声体进行特别设计,就能测得地层的横波速度。

    3)未来随钻声波测井仪的研究重点,应该是解决地层周向速度成像问题、探测地层边界附近不同方位测量的地层纵波速度的差异,进而描述井周围三维岩石力学特征。

  • 图  1   不同发泡剂在不同加量下的泡沫综合值

    Figure  1.   Foam comprehensive values of different foaming agents in different dosages

    图  2   不同发泡剂溶液在不同矿化度下的泡沫综合值

    Figure  2.   Foam comprehensive values of different foaming agent solutions at different salinities

    图  3   不同发泡剂溶液在不同温度下的泡沫综合值

    Figure  3.   Foam comprehensive values of different foaming agent solutions at different temperatures

    图  4   不同泡沫体系的稳态流变曲线

    Figure  4.   Steady-state rheological curves of different foam systems

    图  5   不同泡沫体系的黏弹性能

    Figure  5.   Viscoelastic performance of different foam systems

    图  6   岩心驱替试验装置示意

    Figure  6.   Core flooding device

    图  7   不同泡沫体系封堵驱替试验结果

    Figure  7.   Plugging and flooding test results of different foam systems

    表  1   发泡剂加量优化结果

    Table  1   Optimization result of foaming agent dosage

    发泡剂加量范围,%推荐加量,%
    AOS0.10~0.900.10
    MES0.30~0.900.50
    SDS0.05~0.900.10
    CAB-350.10~0.900.10
    AES0.10~0.900.30
    ZYGK-30.50~0.900.70
    下载: 导出CSV

    表  2   CO2响应性增强泡沫性能

    Table  2   Performance of CO2 responsive enhanced foam system

    泡沫体系起泡体积/mL半衰期/s泡沫综合值/(mL·s)
    常规泡沫650 486 315 900
    CO2响应性增强泡沫4957 1603 544 200
    下载: 导出CSV

    表  3   不同泡沫体系的稠度系数和流变指数

    Table  3   Consistency coefficients and flow behavior indexes of different foam systems

    温度/℃泡沫体系K/(mPa·snn相关系数
    70常规泡沫30.200.560.88
    CO2响应性增强泡沫520.40 0.290.91
    下载: 导出CSV
  • [1] 郭平,李士伦,杜志敏,等. 低渗透油藏注气提高采收率评价[J]. 西南石油学院学报,2002,24(5):46–50.

    GUO Ping, LI Shilun, DU Zhimin, et al. Evaluation on IOR by gas injection in low permeability oil reservoir[J]. Journal of Southwest Petroleum Institute, 2002, 24(5): 46–50.

    [2] 袁士义,王强,李军诗,等. 注气提高采收率技术进展及前景展望[J]. 石油学报,2020,41(12):1623–1632. doi: 10.7623/syxb202012014

    YUAN Shiyi, WANG Qiang, LI Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection[J]. Acta Petrolei Sinica, 2020, 41(12): 1623–1632. doi: 10.7623/syxb202012014

    [3] 祝春生,程林松. 低渗透油藏CO2驱提高原油采收率评价研究[J]. 钻采工艺,2007,30(6):55–57,60. doi: 10.3969/j.issn.1006-768X.2007.06.020

    ZHOU Chunsheng, CHENG Linsong. Research on CO2 flooding in low permeability reservoir[J]. Drilling & Production Technology, 2007, 30(6): 55–57,60. doi: 10.3969/j.issn.1006-768X.2007.06.020

    [4] 黄兴,倪军,李响,等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报,2020,41(7):853–864. doi: 10.7623/syxb202007007

    HUANG Xing, NI Jun, LI Xiang, et al. Characteristics and influencing factors of CO2 flooding in different microscopic pore structures in tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 853–864. doi: 10.7623/syxb202007007

    [5] 王千,杨胜来,拜杰,等. 非均质多层储层中CO2驱替方式对驱油效果及储层伤害的影响[J]. 石油学报,2020,41(7):875–884,902. doi: 10.7623/syxb202007009

    WANG Qian, YANG Shenglai, BAI Jie, et al. Influence of CO2 flooding mode on oil displacement effect and reservoir damage in heterogeneous multi-layer reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 875–884,902. doi: 10.7623/syxb202007009

    [6] 周佩,周志平,李琼玮,等. 长庆油田CO2驱储层溶蚀与地层水结垢规律[J]. 油田化学,2020,37(3):443–448.

    ZHOU Pei, ZHOU Zhiping, LI Qiongwei, et al. Reservoir corrosion and formation water scaling of CO2 flooding in Changqing Oilfield[J]. Oilfield Chemistry, 2020, 37(3): 443–448.

    [7] 张宏录,谭均龙,易成高,等. 草舍油田CO2驱高气油比井举升新技术[J]. 石油钻探技术,2017,45(2):87–91.

    ZHANG Honglu, TAN Junlong, YI Chenggao, et al. New lifting technology for CO2 flooding wells with high GOR in Caoshe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 87–91.

    [8] 赵习森,石立华,王维波,等. 非均质特低渗透油藏CO2驱气窜规律研究[J]. 西南石油大学学报(自然科学版),2017,39(6):131–139.

    ZHAO Xisen, SHI Lihua, WANG Weibo, et al. CO2 channeling sealing in ultra-low-permeability reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(6): 131–139.

    [9] 周游,李治平,张磊,等. 裂缝性特低渗透油藏CO2驱封窜技术研究[J]. 油田化学,2017,34(1):64–68,78.

    ZHOU You, LI Zhiping, ZHANG Lei, et al. Carbon dioxide flooding channeling blocking technology in fractured low permeability reservoirs[J]. Oilfield Chemistry, 2017, 34(1): 64–68,78.

    [10] 杨子浩,罗智忆,林梅钦,等. 改善低渗油藏二氧化碳气驱油效果的耐温泡沫凝胶体系的构建[J]. 油田化学,2020,37(1):86–92.

    YANG Zihao, LUO Zhiyi, LIN Meiqin, et al. Preparation of temperature resistant foam gel system for improving CO2 gas flooding effect in low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(1): 86–92.

    [11]

    ZHANG Kaiqiang, LI Songyan, LIU Lirong. Optimized foam-assisted CO2 enhanced oil recovery technology in tight oil reser-voirs[J]. Fuel, 2020, 267: 117099. doi: 10.1016/j.fuel.2020.117099

    [12]

    ZHANG Chao, WU Pingkeng, LI Zhaomin, et al. Ethanol enhanced anionic surfactant solubility in CO2 and CO2 foam stability: MD simulation and experimental investigations[J]. Fuel, 2020, 267: 117162. doi: 10.1016/j.fuel.2020.117162

    [13]

    ZHANG Yongmin, FENG Yujun, WANG Yuejiao, et al. CO2-switchable viscoelastic fluids based on a pseudogemini surfactant[J]. Langmuir, 2013, 29(13): 4187–4192. doi: 10.1021/la400051a

    [14]

    DAI Caili, LI Weitao, CUI Ya, et al. The effect of functional groups on the sphere-to-wormlike micellar transition in quaternary ammonium surfactant solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 500: 32–39.

    [15] 祖庸,李春洲,马宝岐. 泡沫流变性研究现状及进展[J]. 西北大学学报(自然科学版),1993,23(6):527–532.

    ZU Yong, LI Chunzhou, MA Baoqi. The development of foam rheological property studies[J]. Journal of Northwest University(Natural Science Edition), 1993, 23(6): 527–532.

    [16] 李春洲,祖庸,马宝歧. 泡沫流变特性研究[J]. 化工学报,1993,44(4):480–485.

    LI Chunzhou, ZU Yong, MA Baoqi. A study on foam rheological properties[J]. CIESC Journal, 1993, 44(4): 480–485.

    [17] 敬加强,代科敏,杨露,等. 水基泡沫流变特性研究进展[J]. 西南石油大学学报(自然科学版),2013,35(1):173–178.

    JING Jiaqiang, DAI Kemin, YANG Lu, et al. Investigation advances in rheological properties of water based foam[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(1): 173–178.

  • 期刊类型引用(7)

    1. 李宁,刘鹏,范华军,胡江涛,武宏亮. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术. 2024(01): 1-7 . 本站查看
    2. 朱日祥,金之钧,底青云,杨长春,陈文轩,田飞,张文秀. 智能导钻技术体系与相关理论研发进展. 地球物理学报. 2023(01): 1-15 . 百度学术
    3. 苏义脑,窦修荣,高文凯,刘珂. 油气井随钻测量技术发展思考与展望. 石油科学通报. 2023(05): 535-554 . 百度学术
    4. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 . 百度学术
    5. 孙志峰,仇傲,金亚,李杰,罗博,彭凯旋. 随钻多极子声波测井仪接收声系的优化设计与试验. 石油钻探技术. 2022(04): 114-120 . 本站查看
    6. 朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验. 石油钻探技术. 2022(06): 35-40 . 本站查看
    7. 孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 . 百度学术

    其他类型引用(1)

图(7)  /  表(3)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  223
  • PDF下载量:  58
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2021-09-05
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-17

目录

/

返回文章
返回