页岩油水平井压裂渗吸驱油数值模拟研究

欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明

欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083
引用本文: 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083
OUYANG Weiping, ZHANG Mian, SUN Hu, ZHANG Yunyi, CHI Xiaoming. Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083
Citation: OUYANG Weiping, ZHANG Mian, SUN Hu, ZHANG Yunyi, CHI Xiaoming. Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143-149. DOI: 10.11911/syztjs.2021083

页岩油水平井压裂渗吸驱油数值模拟研究

详细信息
    作者简介:

    欧阳伟平(1986—),男,江西萍乡人,2009年毕业于中山大学理论与应用力学专业,2014年获中国科学院力学研究所流体力学专业博士学位,高级工程师,主要从事油气藏工程及压裂设计方面的研究工作。E-mail:ouywp56@163.com

  • 中图分类号: TE312; TE319

Numerical Simulation of Oil Displacement by Fracturing Imbibition in Horizontal Shale Oil Wells

  • 摘要: 为了提高压裂页岩油水平井产量预测精度、优化闷井时间及压裂液用量等参数,建立了一种考虑压裂液注入、闷井渗吸及开井生产的压裂页岩油水平井油水两相渗流数学模型,利用控制体积有限元法求其数值解,模拟了渗吸作用下基质–裂缝油水置换的过程,获得了油水压力场、速度场、产量及含水率的动态变化。分析了压裂渗吸驱油特征,优化了闷井时间和压裂液用量,并研究了基质渗透率和缝网复杂程度对渗吸驱油的影响。研究结果表明:毛细管力越大,闷井时间越长,则含水率越低,渗吸增产作用越明显;压裂液用量增加能够提高渗吸驱油产量,但同时会引起含水率升高,可通过含水率和产量增幅确定压裂液合理的用量;最优闷井时间受毛细管力、基质渗透率和缝网复杂程度的影响,其中毛细管力和基质渗透率决定了渗吸速度,而缝网复杂程度决定了渗吸面积。所建立的渗吸油水两相渗流模型可为页岩油水平井压裂优化设计提供依据。
    Abstract: To improve the production prediction accuracy of fractured horizontal shale oil wells and optimize parameters such as shut-in time and fracturing fluid volume, a mathematical model of oil-water two-phase flow considering the whole process of fracturing fluid injection, shut-in imbibition, and well-opening production was built. Its numerical solution was obtained with the control volume finite element method, and the oil-water displacement between the matrix and fractures by imbibition was simulated to obtain the dynamic changes of the oil-water pressure field, velocity field, production, and water cut. The characteristics of oil displacement by fracturing imbibition were analyzed, and the shut-in time and fracturing fluid volume were optimized. In addition, the effects of matrix permeability and fracture network complexity on oil displacement by imbibition were examined. The research results show that in the case of a larger capillary force and longer shut-in time, the water cut is lower and the imbibition stimulation effect is more noticeable. The increase in fracturing fluid volume can promote the production of oil displacement by imbibition, while it will raise the water cut at the same time. Thus, the reasonable fracturing fluid volume can be determined by the increments of water cut and production. The optimal shut-in time is affected by the capillary force, matrix permeability, and fracture network complexity. To be specific, the capillary force and matrix permeability determine the imbibition velocity, while the fracture network complexity regulates the imbibition area. The model built in this paper can provide references for the optimal design of horizontal shale oil well fracturing.
  • 胜利油田有注水井10 600余口,分注井5 000余口,广泛分布于整装、断块、低渗透等类型油藏,截至目前,注水开发依然是该油田稳定发展的基础[1-2]。为了实现并保持“注够水,注好水,有效注水”的目标,胜利油田在分注井欠注后,考虑到层间矛盾相对突出,将分层酸化作为解堵增注的主要措施,也将其作为提高“三率”(水井分注率、注水层段合格率、注采对应率)的有效手段之一。

    目前,国内外关于油水井分段压裂技术的研究较多,但对分层酸化技术研究较少。分段压裂技术与分层酸化技术有相通之处,且取得了巨大进步,但从成本、规模、长效、后期检换的安全性能等方面综合考虑,该技术用于注水井的分层酸化是不合适的[3-10]。目前,常用的注水井分层酸化技术有化学暂堵酸化和机械分层酸化2类,机械分层酸化应用更为普遍。分层酸化管柱是机械分层酸化的载体,按所用封隔器类型划分,可将其分为扩张型和压缩型2类,其中扩张型分层酸化管柱主要配套K344型扩张式封隔器[11-12],压缩型分层酸化管柱主要配套Y341型、Y211型、Y221型、Y241型和Y511型等压缩型封隔器[13-16];按管柱功能划分,可将其分为分层酸化管柱和分层酸化分层注水一体化管柱[17-18];按换层方式划分,又可以将其分为投捞式和免投捞式2种,其中投捞式管柱主要有投捞芯子式、投球(棒、堵塞器)式、下测调仪器式等[19],而免投捞式管柱主要有有缆式和无缆式,有缆式是通过电缆传递信号控制换层,无缆式主要是通过压力波传递信号实现换层[20-21]

    现有分层酸化管柱基本满足了胜利油田常规井况(ϕ139.7~ϕ177.8 mm套管)分层酸化需求,但近年来随着该油田常规套损分层注水井、油井转注水井和新投入大井眼注水井数量的日益增加,以及油田降本增效要求的逐步升高,对分注井分层酸化技术及所用管柱的性能提出了更高要求。为此,笔者在分析胜利油田注水井分层酸化管柱矿场需求和近几年发展的基础上,探讨了存在的问题,指出了攻关方向和发展建议。

    胜利油田的整装、断块油藏埋深一般小于2 500 m,地层温度低于120 ℃,地层压力低于25 MPa;低渗透油藏埋深小于4 000 m,地层温度低于150 ℃,地层压力低于35 MPa。整装、断块油藏分注井以2~3层为主,最大分层数为7层;低渗透油藏分注井以2层为主,最大分层数为4层。随着“三率”和精细注水水平的日益提高,胜利油田在进行注水井分层酸化时,特殊井况和常规分注井降本增效要求酸化管柱要具有特殊功能。

    近年来,胜利油田套损分注井比例日益增加,治理后形成了一批套管内径为102.0/90.0 mm的分注井,为确保能够“注够水,注好水,有效注水”,需要配套相应的分层酸化管柱。另外,胜利油田调整油藏方案时,将一些用ϕ244.5 mm套管的油井转为了注水井,同时胜利油田海上新投入的分注井以使用ϕ244.5 mm套管为主,在此情况下,也需要完善分层酸化管柱,以适应矿场需求。

    对于低油价的常态化,降本增效成为国内油田普遍采用的应对措施之一。就分层酸化管柱而言,应主要做到2方面:1)提高管柱的施工成功率及管柱的矿场适应性;2)增加管柱的功能,通过增加分层酸化管柱的功能而减少其他投入,进而达到降本增效的目的。

    针对技术需求,近年来胜利油田研究形成了基本管柱、可替酸的分层酸化管柱、酸化返排一体化管柱、分层酸化分层注水一体化管柱和重复酸化完井管柱等,进行了大量应用,并取得了一定应用效果。

    针对胜利油田整装、断块及低渗透油藏常规井分层酸化需求,研究形成了3种基本分层酸化管柱(如图1所示),目前每年在现场应用近千井次。

    图  1  基本分层酸化管柱
    Figure  1.  Basic stratified acidizing strings

    K344型管柱主要由K344型封隔器、水力锚、投球滑套、节流器和洗井阀等组成,如图1(a)所示。主要用于整装、断块等类型油藏注水井的分层酸化,分1~6层酸化的约占90%,其中分2~3层酸化的约占85%。

    Y211/Y221型管柱主要由Y211/221型封隔器、投球滑套、节流器和洗井阀等组成,如图1(b)所示。主要用于整装、断块和低渗透油藏注水井的分层酸化,分1~2层酸化的约占4%。

    Y341型管柱主要由Y341型封隔器、补偿器、投球滑套、水力锚、定压滑套和洗井阀等组成,如图1(c)所示。主要用于低渗油藏注水井的分层酸化,分1~6层酸化的约占6%。

    3种基本分层酸化管柱的技术指标:K344型管柱的工作压力≤25 MPa,工作温度≤120 ℃,适用于内径为99.6~220.5 mm的套管;Y211/Y221和Y341型管柱的工作压力≤35 MPa,工作温度≤150 ℃,适用于内径为99.6~220.5 mm的套管。

    其中,投球滑套是分层酸化的主要配套工具之一,用以控制酸化换层。投球滑套主要由上接头、中心管、内部滑套、活塞、弹簧、挡套和滑套座组成,如图2所示。

    图  2  投球滑套结构
    1.上接头;2.中心管;3.内部滑套;4.活塞;5.弹簧;6.挡套;7.滑套座
    Figure  2.  Structure of a ball-throwing sliding sleeve

    使用时,投球滑套(不带球)随管柱下井。酸化换层时,投球至内部滑套,在注入液作用下控制剪钉被剪断,钢球随内部滑套下落至滑套座,关闭投球滑套下部管柱进液通道;同时,注入液推动活塞克服弹簧力下移,打开出液孔,实现对应层位的酸化。

    分层酸化时,炮眼处污染易引起酸化启动力高的情况,由于常规分层酸化管柱无法替酸,一般需更换压力等级高的井口重新施工,会耗费更多的人力物力,增加成本,同时增大施工安全风险。针对该问题,胜利油田研究形成了可替酸分层酸化管柱,其核心是研制出多功能洗井阀,替换了基本分层酸化管柱中的洗井阀。多功能洗井阀主要由阀球机构和锁爪机构组成,如图3所示。

    图  3  多功能洗井阀结构
    1.本体;2.锁爪;3.阀球;4.阀座;5.剪钉;6.锁环;7.接头
    Figure  3.  Structure of a multi-functional flushing valve

    可替酸分层酸化管柱下井时,不带钢球,保证正向畅通,实现正向替酸及对酸化层段的酸液浸泡,降低施工泵压。投球后,正向加压至剪钉被剪断,阀座带动锁爪下移至限位处。然后,锁爪内收,将阀球锁住,避免反洗井时将球洗出;同时,通过锁环实现锁紧。此时,可实现普通洗井阀功能。可替酸分层酸化管柱的技术指标:工作压力≤35 MPa,工作温度≤150 ℃。目前,该分层酸化管柱已广泛应用于胜利油田分注井的酸化施工中。

    现场对注水井进行分层酸化时,需要及时将解堵后形成的酸渣返排,以降低对地层的污染。目前,一般利用混气返排、抽汲返排等措施提高返排效果,但成本相对较高。为此,研制了酸化–返排一体化管柱,该管柱主要由转换器、封隔器和射流解堵器等组成,如图4所示。

    图  4  酸化–返排一体化管柱结构
    Figure  4.  Acidizing–flowback integrated string

    酸化时,酸液依次经过油管、转换器内中心管、封隔器中心管、ϕ48.0 mm油管、射流解堵器吸入口,然后进入目的层酸化。返排时,返排液依次经过套管环空、转换器内外中心管环空、封隔器中心管、ϕ48.0 mm油管环空、ϕ88.9 mm油管与ϕ48.0 mm油管环空、丝堵、射流解堵器喷嘴、ϕ48.0 mm油管、封隔器中心管、转换器内中心管、油管,然后流出井筒,主要靠动力液流经射流解堵器喷嘴时产生的负压实现酸渣的高效返排,进而降低返排成本。目前,酸化–返排一体化管柱在胜利油田累计实施50余井次,最大压差达到 11 MPa。

    常规分注井分层酸化、完井需分步进行,即先下入分层酸化管柱进行分层酸化,然后起出,再下入分层注水管柱完井,因此会造成占井周期长、工序多等问题。为此,研制了分层酸化分层注水一体化管柱,用一趟管柱完成分层酸化和分层注水。分层酸化分层注水一体化管柱主要由封隔器、一体化配水器和配水器等组成,如图5所示。

    图  5  分层酸化分层注水一体化管柱
    Figure  5.  Stratified acidizing–separate injection integrated string

    使用分层酸化分层注水一体化管柱时,按管柱入井—酸洗—投球坐封并开启下层配水器—酸化下层—投球换层—酸化上层—返排洗球—正常注水的流程进行。投球换层时,一体化芯子剪断剪钉,实现2级分离,上部402部分出水孔打开,酸化对应层位;下部404部分随低密度球下落至底部配水器,关闭下部出水孔。完成酸化后,返排出低密度球,转入正常分注,测调与常规空心测调类似。分层酸化分层注水一体化管柱实现了一趟管柱分层酸化后转分层注水完井,节约了工具费用、缩短了占井周期,达到了降本增效的目的。截至目前,已发展形成了化分层酸化、分层注水测调一体化技术[20]

    分层酸化分层注水一体化管柱的技术指标:工作压力≤35 MPa,工作温度≤150 ℃,适用层数≤3层。年均实施约30井次,施工成功率100%。

    由于分层酸化分层注水一体化管柱仍采用投球滑套式换层,故不能对单层进行重复酸化。针对该问题,结合分层注水测调一体化技术[21-23],形成了重复酸化完井管柱。重复酸化完井管柱的核心是,用测调一体化配水器替换基本分层注水管柱中的投球滑套,通过电缆向井下输入测调仪器,地面控制水嘴开关,实现换层,如图6所示。重复酸化完井管柱目前主要用于胜利油田单层的重复酸化,年均实施约20井次。

    图  6  测调一体化注水系统
    Figure  6.  Measurement–adjustment integrated water injection system

    尽管近年来胜利油田在注水井分层酸化管柱研究方面取得了较多成果和较好的应用效果,但相对于技术需求,依然存在一些问题:1)随着套损井比例增大及分层注水工艺的不断完善,套管内径小于90.0和80.0 mm的分注井都存在一定的分层酸化需求,对于分层酸化管柱的耐压能力提出了更高要求;2)酸化–返排一体化管柱虽然能实现酸渣的高效返排,但其提放管柱式换层制约了技术的规模化推广应用;3)分层酸化分层注水一体化管柱可实现酸化、注水管柱的有效融合,但滑套结构的换层方式使酸化层数受限且无法实现重复酸化;4)重复酸化完井管柱虽然可实现重复酸化,但需要下入测调仪进行酸化换层,耗时较长且增加了作业风险,考虑安全性、时效性和成本等因素,目前主要用于单层酸化。

    针对上述问题,结合相关研究现状和目前的技术发展趋势,提出以下发展建议:

    1)不断优化完善分层酸化管柱。针对胜利油田整装、断块、低渗透油藏及难动用储量的水驱开发,结合分注、酸化工艺和材料研究的不断进步,通过关键配套工具技术攻关及管柱结构的优化配套,逐步形成低成本、低风险酸化管柱,以满足矿场需求。

    2)进一步研究多功能集成管柱。近年来,基于降本提质增效目的,胜利油田提出了“分注管柱(陆上)在井5年以上”的目标,并初步建设了相应的示范区。但长远考虑,有必要研究形成适用范围更广的集分层注水、分层酸化等功能于一体的集成管柱。

    3)加强智能注水技术和智能管柱研究。相比常规投捞式换层方式,智能注水技术换层方式的安全性、可操作性更高,为多功能集成管柱的研究创造了条件。例如,胜利油田已经研究形成的有线传输智能注水技术和无线智能测控分注技术(相关注水系统见图7[24-26],均累计应用达80井次以上,取得了很好的应用效果。为了实时掌握井下注水情况,为油藏方案调整提供精准依据,应进一步开展智能注水技术和智能管柱的研究及矿场实践。

    图  7  智能注水系统
    Figure  7.  Intelligent water injection system

    1)胜利油田现有分层酸化管柱满足了很多现场需求,取得了一定效果:K344型、Y221/Y211型和Y341型等3种基本分层酸化管柱,满足了胜利油田整装、断块、低渗透等油藏常规注水井的分层酸化需求;可替酸分层酸化管柱实现了酸洗功能,提高了酸化成功率;酸化–返排一体化管柱一趟管柱实现了酸化、高效返排功能,节约了成本;分酸分注一体化管柱一趟管柱实现了分层酸化、分层注水,缩短了占井周期,实现了降本增效;重复酸化完井管柱实现了单层的重复酸化。

    2)随着胜利油田在套损井治理、难动用储量水驱开发及长寿命注水方面的不断发展,对注水井分注技术及相应的分层酸化技术提出了更高要求。

    3)基于矿场需求、研究现状和目前的技术发展趋势,建议在不断完善现有技术的同时,加强多功能集成管柱的研究。同时,应进一步研究具有智能分注、智能酸化等功能的智能注水技术和智能管柱,并开展相应的矿场实践。

  • 图  1   复杂裂缝网络描述示意[24]

    Figure  1.   Description of complex fracture networks[24]

    图  2   裂缝基质的CVFE网格示意

    Figure  2.   CVFE meshes of the matrix and fractures

    图  3   单段在不同毛细管力作用下的产油量及含水率

    Figure  3.   Oil production and water cut of single stage under different capillary forces

    图  4   闷井75 d时裂缝周围油水相的压力场及速度场

    Figure  4.   Pressure field and velocity field of the oil phase and water phase around the fractures on the 75th day of shut in

    图  5   闷井时间对单段产油量的影响

    Figure  5.   Effect of shut-in time on the oil production of single stage

    图  6   压裂液用量对产油量及含水率的影响

    Figure  6.   Effect of fracturing fluid volume on oil production and water cut

    图  7   基质渗透率对单段产油量的影响

    Figure  7.   Effect of matrix permeability on the oil production of single stage

    图  8   缝网复杂程度对单段产油量的影响

    Figure  8.   Effect of fracture network complexity on the oil production of single stage

  • [1] 李相方,冯东,张涛,等. 毛细管力在非常规油气藏开发中的作用及应用[J]. 石油学报,2020,41(12):1719–1733. doi: 10.7623/syxb202012024

    LI Xiangfang, FENG Dong, ZHANG Tao, et al. The role and its application of capillary force in the development of unconventional oil and gas reservoirs and its application[J]. Acta Petrolei Sinica, 2020, 41(12): 1719–1733. doi: 10.7623/syxb202012024

    [2] 刘煜,杨建民,王丹,等. 清洁压裂液返排液渗吸驱油效果影响因素评价[J]. 断块油气田,2020,27(5):666–670.

    LIU Yu, YANG Jianmin, WANG Dan, et al. Evaluation of influencing factors on imbibition displacement effect of clean fracturing flowback fluids[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 666–670.

    [3] 王桂娟.低渗透砂岩油藏渗吸规律及特征研究[D].青岛: 中国石油大学(华东), 2016.

    WANG Guijuan. Study on the law and characteristics of imbibition in low permeability sandstone reservoir[D]. Qingdao: China University of Petroleum (East China), 2016.

    [4] 苏煜彬,林冠宇,韩悦. 表面活性剂对致密砂岩储层自发渗吸驱油的影响[J]. 断块油气田,2017,24(5):691–694.

    SU Yubin, LIN Guanyu, HAN Yue. Influence of surfactant on spontaneous imbibition in tight sandstone reservoir and its application[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 691–694.

    [5] 刘俣含,赵志成,石善志,等. 基于正交试验的致密油渗吸影响因素分析[J]. 石油钻采工艺,2020,42(2):189–194.

    LIU Yuhan, ZHAO Zhicheng, SHI Shanzhi, et al. Analyzing the factors influencing the imbibition of tight oil based on orthogonal experiment[J]. Oil Drilling & Production Technology, 2020, 42(2): 189–194.

    [6]

    YASSIN M R, DEHGHANPOUR H, BEGUM M, et al. Evaluation of imbibition oil recovery in the Duvernay Formation[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(2): 257–272.

    [7] 李耀华,宋岩,徐兴友,等. 鄂尔多斯盆地延长组7段凝灰质页岩油层的润湿性及自发渗吸特征[J]. 石油学报,2020,41(10):1229–1237. doi: 10.7623/syxb202010007

    LI Yaohua, SONG Yan, XU Xingyou, et al. Wettability and spontaneous imbibition characteristics of the tuffaceous shale reservoirs in the member 7 of Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2020, 41(10): 1229–1237. doi: 10.7623/syxb202010007

    [8] 许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104. doi: 10.11911/syztjs.2020114

    XU Feng, YAO Yaodong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104. doi: 10.11911/syztjs.2020114

    [9] 李兆敏,赵艳玲,王海涛,等. 注入水矿化度对盐间页岩油储层物性影响研究[J]. 特种油气藏,2020,27(2):131–137.

    LI Zhaomin, ZHAO Yanling, WANG Haitao, et al. Effects of injection water salinity on physical properties of inter-salt shale oil reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 131–137.

    [10] 朱维耀,鞠岩,赵明,等. 低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J]. 石油学报,2002,23(6):56–59. doi: 10.3321/j.issn:0253-2697.2002.06.012

    ZHU Weiyao, JU Yan, ZHAO Ming, et al. Spontaneous imbibition mechanism of flow through porous media and waterflooding in low-permeability fractured sandstone reservoir[J]. Acta Petrolei Sinica, 2002, 23(6): 56–59. doi: 10.3321/j.issn:0253-2697.2002.06.012

    [11] 王家禄,刘玉章,陈茂谦,等. 低渗透油藏裂缝动态渗吸机理实验研究[J]. 石油勘探与开发,2009,36(1):86–90. doi: 10.3321/j.issn:1000-0747.2009.01.011

    WANG Jialu, LIU Yuzhang, CHEN Maoqian, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(1): 86–90. doi: 10.3321/j.issn:1000-0747.2009.01.011

    [12] 韦青,李治平,白瑞婷,等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术,2016,44(5):109–116.

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116.

    [13] 谷潇雨,蒲春生,黄海,等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发,2017,44(6):948–954. doi: 10.1016/S1876-3804(17)30107-6

    GU Xiaoyu, PU Chunsheng, HUANG Hai, et al. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2017, 44(6): 948–954. doi: 10.1016/S1876-3804(17)30107-6

    [14] 党海龙,王小锋,段伟,等. 鄂尔多斯盆地裂缝性低渗透油藏渗吸驱油研究[J]. 断块油气田,2017,24(5):687–690.

    DANG Hailong, WANG Xiaofeng, DUAN Wei, et al. Study on imbibition flooding in fractured low-permeability reservoir of Ordos Basin[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 687–690.

    [15] 吴润桐,杨胜来,王敉邦,等. 致密砂岩静态渗吸实验研究[J]. 辽宁石油化工大学学报,2017,37(3):24–29. doi: 10.3969/j.issn.1672-6952.2017.03.006

    WU Runtong, YANG Shenglai, WANG Mibang, et al. Experimental study on static imbibition of tight sandstone[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2017, 37(3): 24–29. doi: 10.3969/j.issn.1672-6952.2017.03.006

    [16] 屈雪峰,雷启鸿,高武彬,等. 鄂尔多斯盆地长7致密油储层岩心渗吸试验[J]. 中国石油大学学报(自然科学版),2018,42(2):102–109.

    QU Xuefeng, LEI Qihong, GAO Wubin, et al. Experimental study on imbibition of Chang 7 tight oil cores in Erdos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(2): 102–109.

    [17]

    ZHAO Zhihong, TAO Liang, ZHAO Yuhang, et al. Mechanism of water imbibition in organic shale: an experimental study[R]. SPE 202699, 2020.

    [18]

    WANG Mingyuan, ARGÜELLES-VIVAS F J, ABEYKOON G A, et al. The effect of phase distribution on imbibition mechanisms for enhanced oil recovery in tight reservoirs[R]. SPE 200431, 2020.

    [19] 雷征东,覃斌,刘双双,等. 页岩气藏水力压裂渗吸机理数值模拟研究[J]. 西南石油大学学报(自然科学版),2017,39(2):118–124.

    LEI Zhengdong, QIN Bin, LIU Shuangshuang, et al. Imbibition mechanism of hydraulic fracturing in shale gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(2): 118–124.

    [20] 李宪文,刘锦,郭钢,等. 致密砂岩储层渗吸数学模型及应用研究[J]. 特种油气藏,2017,24(6):79–83. doi: 10.3969/j.issn.1006-6535.2017.06.015

    LI Xianwen, LIU Jin, GUO Gang, et al. Mathematical model of imbibition and its application in tight sandstone reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 79–83. doi: 10.3969/j.issn.1006-6535.2017.06.015

    [21] 王敬,刘慧卿,夏静,等. 裂缝性油藏渗吸采油机理数值模拟[J]. 石油勘探与开发,2017,44(5):761–770.

    WANG Jing, LIU Huiqing, XIA Jing, et al. Mechanism simulation of oil displacement by imbibition in fractured reservoirs[J]. Petroleum Exploration and Development, 2017, 44(5): 761–770.

    [22] 王睿. 致密油藏压后闷井蓄能机理与规律的数值模拟研究[D]. 北京: 中国石油大学(北京), 2019.

    WANG Rui. Numerial simulation study on mechanism and law of energy storage in shut-in schedule after fracturing of tight oil[D]. Beijing: China University of Petroleum (Beijing), 2019.

    [23] 王付勇,曾繁超,赵久玉. 低渗透/致密油藏驱替–渗吸数学模型及其应用[J]. 石油学报,2020,41(11):1396–1405. doi: 10.7623/syxb202011009

    WANG Fuyong, ZENG Fanchao, ZHAO Jiuyu. A mathematical model of displacement and imbibition of low-permeability tight reservoirs and its application[J]. Acta Petrolei Sinica, 2020, 41(11): 1396–1405. doi: 10.7623/syxb202011009

    [24] 欧阳伟平,孙贺东,韩红旭. 致密气藏水平井多段体积压裂复杂裂缝网络试井解释新模型[J]. 天然气工业,2020,40(3):74–81. doi: 10.3787/j.issn.1000-0976.2020.03.009

    OUYANG Weiping, SUN Hedong, HAN Hongxu. A new well test interpretation model for complex fracture networks in horizontal wells with multi-stage volume fracturing in tight gas reservoirs[J]. Natural Gas Industry, 2020, 40(3): 74–81. doi: 10.3787/j.issn.1000-0976.2020.03.009

    [25]

    CHEN Zhangxin, HUAN Guanren, MA Yuanle. Computational methods for multiphase flows in porous media[M]. Dallas: Society for Industrial and Applied Mathematics, 2006.

  • 期刊类型引用(8)

    1. 薛佺,郭永鑫,庞勇. 基于嵌入式单片机桥式同心分层注水一体化测调监测研究. 粘接. 2024(01): 165-168 . 百度学术
    2. 平恩顺,张明晰,王瑞泓,王永亮,赵磊,李路遥,张京宝. 跨采油树不动管柱酸压增注技术研究. 钻采工艺. 2023(02): 122-125 . 百度学术
    3. 魏军. 基于超声波反射法的油田注水井管柱腐蚀识别. 无损检测. 2023(10): 59-63+77 . 百度学术
    4. 赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 . 本站查看
    5. 孙敏. 分层注水压力控制驱油效果实验研究. 化学工程师. 2022(08): 59-62 . 百度学术
    6. 曹力元. 苏北油田CO_2驱油同心双管分层注气技术. 石油钻探技术. 2022(04): 109-113 . 本站查看
    7. 严梁柱,方琼瑶. 螺杆驱动滑套式低频脉冲注水工具设计. 液压气动与密封. 2022(10): 59-64 . 百度学术
    8. 张玉梅. 锚定补偿式分层注水管柱的改进及应用. 中外能源. 2022(10): 52-56 . 百度学术

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  369
  • PDF下载量:  149
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-04-11
  • 修回日期:  2021-06-08
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2021-08-24

目录

/

返回文章
返回