长庆油田陇东地区页岩油水平井细分切割压裂技术

李杉杉, 孙虎, 张冕, 池晓明, 刘欢

李杉杉, 孙虎, 张冕, 池晓明, 刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
引用本文: 李杉杉, 孙虎, 张冕, 池晓明, 刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
LI Shanshan, SUN Hu, ZHANG Mian, CHI Xiaoming, LIU Huan. Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080
Citation: LI Shanshan, SUN Hu, ZHANG Mian, CHI Xiaoming, LIU Huan. Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92-98. DOI: 10.11911/syztjs.2021080

长庆油田陇东地区页岩油水平井细分切割压裂技术

详细信息
    作者简介:

    李杉杉(1984—),女,吉林镇赉人,2006年毕业于长江大学地理信息系统专业,2009年获长江大学矿物学、岩石学、矿床学专业硕士学位,工程师,主要从事油气田开发工作。E-mail:lishanshan001@cnpc.com.cn

  • 中图分类号: TE357.1

Subdivision Cutting Fracturing Technology for Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield

  • 摘要: 长庆油田陇东地区页岩油储层脆性指数低、天然裂缝不发育、不易形成复杂缝网,进行分段多簇体积压裂时,受储层物性、地应力、各向异性及水力裂缝簇间干扰等因素影响,簇间进液不均,达不到储层均匀改造的目的。针对该问题,依据缝控储量最大化原则,在分级评价页岩油水平段储层品质及建立非均质地质模型的基础上,开展了基于甜点空间分布和综合甜点指数的细分切割单段单簇压裂布缝设计方法研究,优化了压裂施工参数,形成了页岩油水平井细分切割压裂技术。该技术在长庆油田陇东地区10口页岩油水平井进行了现场应用,取得了很好的压裂效果,应用井投产后日产油量较邻井高出35.9%。长庆油田陇东地区页岩油水平井细分切割压裂技术的成功应用,为类似页岩油储层改造提供了新的技术思路。
    Abstract: The shale oil reservoirs in the Longdong area of the Changqing Oilfield are characterized by low brittleness index and undeveloped natural fractures. In this case, complex fracture networks are difficult to form. During multi-stage and multi-cluster volumetric fracturing, uniform reservoir stimulation is hard to achieve due to various effects of reservoir properties, in-situ stresses, anisotropy and inter-cluster interference of hydraulic fractures, and uneven fluid inflow within the clusters. According to the principle of maximizing fracture-controlled reserves, reservoir quality was evaluated and graded for the shale oil horizontal sections, and a heterogeneous geological model was built. On this basis, the layout of single-stage and single-cluster fractures by subdivision cutting fracturing was designed according to the spatial distribution of sweet spots and the comprehensive sweet spot index, and the fracturing parameters were optimized accordingly. As a result, a subdivision cutting fracturing technology for horizontal shale oil wells was developed. Field tests were conducted in 10 horizontal shale oil wells in the Longdong area of the Changqing Oilfield with good stimulation effect, where the daily oil production of the test wells was 35.9% higher than that of adjacent wells. With its successful application, this technology provides a new idea for the stimulation of the similar shale oil reservoirs.
  • 图  1   不同压裂方式下的裂缝扩展对比

    Figure  1.   Comparison of fracture propagation under different fracturing modes

    图  2   多簇合压和单簇单压下的产能预测曲线

    Figure  2.   Productivity prediction curves under multi-cluster fracturing and single-cluster fracturing

    图  3   华HXX-X井不同压裂段数下压后效果的模拟结果

    Figure  3.   Simulation results of fracturing effect under different fracturing sections of Well Hua HXX-X

    图  4   华H34平台的非均匀地质模型

    Figure  4.   Heterogeneous geological model of the Platform Hua H34

    图  5   华H34平台综合甜点分布

    Figure  5.   Sweet spot distribution on the Platform Hua H34

    图  6   不同裂缝半长下的累计产量

    Figure  6.   Cumulative production with different half-lengths of fractures

    图  7   XP237平台各井的产油量曲线

    Figure  7.   Oil production curves of the wells on the Platform XP237

    图  8   XP237平台各井的含水率曲线

    Figure  8.   Water cut curves of the wells on the Platform XP237

    表  1   多簇合压和单簇单压下的采油指数和无阻流量

    Table  1   Productivity index and open flow capacity under multi-cluster fracturing and single-cluster fracturing

    序号压裂工艺采油指数/(m3·d–1·MPa–1无阻流量/(m3·d–1
    1多簇合压2.058 4632.93
    2单簇单压2.241 6535.86
    下载: 导出CSV

    表  2   射孔位置优选结果

    Table  2   Optimized perforating positions

    压裂
    段次
    射孔
    位置/
    m
    段间
    距/m
    综合
    甜点
    指数,%
    压裂
    段次
    射孔
    位置/
    m
    段间
    距/m
    综合
    甜点
    指数,%
    13 221.5055.9 132 741.9025.0066.2
    23 169.6051.9059.2142 711.1030.8079.1
    33 133.8035.8082.9152 670.4040.7077.5
    43 106.3027.5060.0162 643.3027.1072.0
    53 079.8026.5073.9172 598.1045.2064.1
    63 053.4026.4060.5182 568.6029.5073.0
    73 028.1025.3071.4192 540.6028.0064.5
    83 002.8025.3054.7202 510.9029.7070.0
    92 962.0040.8062.1212 480.9030.0087.7
    102 928.1033.9056.0222 455.1025.8066.5
    112 792.10136.00 63.1232 393.6061.5052.5
    122 766.9025.2080.8242 354.0039.6087.5
    下载: 导出CSV

    表  3   相同液量、不同砂比(加砂量)下的裂缝参数及压后的产量

    Table  3   Fracture parameters and post-fracturing production with the same fluid rates but different proppant concentration (sand content)

    序号砂比,
    %
    每段液量/m3每段加砂量/m3支撑缝长/m导流能力/
    (mD·m)
    无因次
    导流能力
    第1年
    产量/t
    12162078.0131.30740.356.44 083.2
    21862066.8130.40644.549.44 053.0
    31562055.7129.50538.841.64 023.5
    41262044.6121.50454.337.43 773.6
    5 962033.4108.70381.835.13 226.3
    下载: 导出CSV

    表  4   两种粒径支撑剂以不同比例组合后的裂缝导流能力与压后产量

    Table  4   Fracture conductivity and post-fracturing production after the proppant with two particle sizes were combined in different proportions

    序号40/70目和20/40目
    支撑剂配比
    导流能力/
    (mD·m)
    无因次导流
    能力
    第1年
    产量/t
    11∶3533.425.85 263.1
    21∶2481.723.35 253.6
    31∶1405.919.65 243.4
    42∶1327.515.85 233.8
    53∶1276.513.45 179.2
    下载: 导出CSV

    表  5   不同尺寸连续油管在不同排量下的环空流速

    Table  5   Annular flow velocity of coiled tubings in different sizes under different flow rates

    排量/
    (m3·min–1
    不同尺寸连续油管对应环空流速/(m·s–1
    ϕ58.4 mmϕ50.8 mmϕ43.2 mm
    6.411.510.610.1
    6.611.910.910.4
    6.812.211.210.7
    7.012.611.611.0
    7.212.911.911.3
    7.413.312.211.7
    7.613.712.512.0
    7.814.012.912.3
    8.014.413.212.6
    8.214.713.512.9
    8.415.113.913.2
    下载: 导出CSV

    表  6   XP237平台各井改造和投产数据对比

    Table  6   Comparison of stimulation and production data of the wells on the Platform XP237

    井别井号投产时间目前情况改造工艺段数簇数入地液量/
    m3
    加砂量/
    m3
    水平段
    长度/m
    油层钻遇
    率,%
    加砂强度/
    (m3·m–1)
    进液强度/
    (m3·m–1)
    油量/
    t
    含水率,%
    对比井XP 237-712018/02/18 8.8516.3桥塞分段316729 660.63 261.32 237.079.81.816.6
    XP 237-742018/08/0317.5325.8226226 418.53 321.41 876.085.32.116.5
    XP 237-752018/08/19 8.6233.7266728 779.03 102.71 682.379.32.321.6
    XP 237-762018/08/1914.7818.5185822 676.42 842.81 934.687.11.713.4
    应用井XP 237-722018/05/2114.3919.2细分切割404023 467.72 610.01 535.099.71.715.3
    下载: 导出CSV
  • [1] 石道涵,张兵,何举涛,等. 鄂尔多斯长7致密砂岩储层体积压裂可行性评价[J]. 西安石油大学学报(自然科学版),2014,29(1):52–55.

    SHI Daohan, ZHANG Bing, HE Jutao, et al. Feasibility evaluation of volume fracturing of Chang-7 tight sandstone reservoir in Ordos Basin[J]. Journal of Xi’an Shiyou University(Natural Science), 2014, 29(1): 52–55.

    [2] 蒋廷学. 页岩油气水平井压裂裂缝复杂性指数研究及应用展望[J]. 石油钻探技术,2013,41(2):7–12. doi: 10.3969/j.issn.1001-0890.2013.02.002

    JIANG Tingxue. The fracture complexity index of horizontal wells in shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(2): 7–12. doi: 10.3969/j.issn.1001-0890.2013.02.002

    [3] 苏良银,常笃,杨海恩,等. 低渗透油藏侧钻水平井小井眼分段多簇压裂技术[J]. 石油钻探技术,2020,48(6):94–98. doi: 10.11911/syztjs.2020112

    SU Liangyin, CHANG Du, YANG Haien, et al. Segmented multi-cluster fracturing technology for sidetrack horizontal well with slim holes in low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 94–98. doi: 10.11911/syztjs.2020112

    [4] 梁潇,喻高明,黄永章,等. 大牛地气田分段多簇缝网压裂技术[J]. 断块油气田,2019,26(5):617–621. doi: 10.6056/dkyqt201905016

    LIANG Xiao, YU Gaoming, HUANG Yongzhang, et al. Segmented multi-cluster net fracturing technology in Daniudi Gas Field[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 617–621. doi: 10.6056/dkyqt201905016

    [5] 张矿生,王文雄,徐晨,等. 体积压裂水平井增产潜力及产能影响因素分析[J]. 科学技术与工程,2013,13(35):10475–10480.

    ZHANG Kuangsheng, WANG Wenxiong, XU Chen, et al. Analysis on stimulation potential and productivity influencing factors of network fractured horizontal well[J]. Science Technology and Engineering, 2013, 13(35): 10475–10480.

    [6] 翁定为,付海峰,梁宏波. 水力压裂设计的新模型和新方法[J]. 天然气工业,2016,36(3):49–54. doi: 10.3787/j.issn.1000-0976.2016.03.007

    WENG Dingwei, FU Haifeng, LIANG Hongbo. New models and methods for hydraulic fracturing design[J]. Natural Gas Industry, 2016, 36(3): 49–54. doi: 10.3787/j.issn.1000-0976.2016.03.007

    [7] 王汉青,陈军斌,张杰,等. 基于权重分配的页岩气储层可压性评价新方法[J]. 石油钻探技术,2016,44(3):88–94.

    WANG Hanqing, CHEN Junbin, ZHANG Jie, et al. A new method of fracability evaluation of shale gas reservoir based on weight allocation[J]. Petroleum Drilling Techniques, 2016, 44(3): 88–94.

    [8] 蒋廷学,卞晓冰. 页岩气储层评价新技术:甜度评价方法[J]. 石油钻探技术,2016,44(4):1–6.

    JIANG Tingxue, BIAN Xiaobing. The novel technology of shale gas play evaluation: sweetness calculation method[J]. Petroleum Drilling Techniques, 2016, 44(4): 1–6.

    [9] 白晓虎,齐银,陆红军,等. 鄂尔多斯盆地致密油水平井体积压裂优化设计[J]. 石油钻采工艺,2015,37(4):83–86.

    BAI Xiaohu, QI Yin, LU Hongjun, et al. Optimization design for volume fracturing of horizontal wells in tight oil reservoir of Ordos Basin[J]. Oil Drilling & Production Technology, 2015, 37(4): 83–86.

    [10] 吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报,2014,35(4):706–714. doi: 10.7623/syxb201404011

    WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011

    [11]

    WEDDLE P, GRIFFIN L, MARK PEARSON C. Mining the Bakken II–pushing the envelope with extreme limited entry perforating[R]. SPE 189880, 2018.

  • 期刊类型引用(17)

    1. 王旭锋,牛志军,张磊,李翔宇,王纪尧,常泽超,陈旭阳. 超声振动在矿山煤岩致裂中的研究进展与展望. 煤炭科学技术. 2024(01): 232-243 . 百度学术
    2. 杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 . 百度学术
    3. 向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 . 百度学术
    4. 黄继庆,胡海,樊思成,刘伟吉,祝效华. 基于扩展PFC2D-GBM模型的单齿切削花岗岩破碎机制. 中国石油大学学报(自然科学版). 2023(02): 81-89 . 百度学术
    5. 刘伟吉,张有建,祝效华,胡海,何灵,陈梦秋. 影响高压电脉冲破岩效率的关键因素分析. 天然气工业. 2023(10): 112-124 . 百度学术
    6. 齐悦,柳贡慧,李军,查春青,田玉栋,李玉梅. 基于单齿多维度冲击破岩机理仿真研究. 石油机械. 2023(12): 1-7 . 百度学术
    7. 王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 . 百度学术
    8. 赵研,张丛珊,高科,张增增,赵大军,李家晟,吕晓姝,平天才. 超声波辅助PDC切削齿振动破岩仿真分析. 钻探工程. 2021(04): 11-20 . 百度学术
    9. 路宗羽,郑珺升,蒋振新,赵飞. 超声波高频旋冲钻井技术破岩效果试验研究. 石油钻探技术. 2021(02): 20-25 . 本站查看
    10. 李鹏,蔡美峰. 深部金属矿产资源开发面临的挑战及新见解(英文). Transactions of Nonferrous Metals Society of China. 2021(11): 3478-3505 . 百度学术
    11. 聂佳辉,吴志鑫,雷磊,郑靖,周仲荣. TBM的刀具改性与辅助破岩技术研究现状. 机械. 2021(12): 1-10+19 . 百度学术
    12. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 . 百度学术
    13. 徐梓辰,金衍,腾学清. 液压式应力波辅助破岩工具设计及实验研究. 机床与液压. 2020(19): 1-7 . 百度学术
    14. 刘春生,韩德亮,那洪亮. 碟盘振动切削煤岩机构的动力学模型与幅频特性. 黑龙江科技大学学报. 2020(05): 499-504 . 百度学术
    15. 李玉梅,张涛,苏中,于丽维,刘建明. 复合冲击频率配合特性模拟研究. 石油机械. 2019(09): 30-36 . 百度学术
    16. 索忠伟. ?228.6mm射流冲击器研制及硬地层提速试验. 石油钻探技术. 2019(04): 54-58 . 本站查看
    17. 李玉梅,于丽维,张涛,苏中,刘建明. 复合冲击钻井立体破岩特性模拟研究. 系统仿真学报. 2019(11): 2471-2476 . 百度学术

    其他类型引用(23)

图(8)  /  表(6)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  207
  • PDF下载量:  131
  • 被引次数: 40
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-06-27
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回