Production System Optimization for Enhanced Fracture Network Stimulation in Continental Shale Oil Reservoirs in the Dongying Sag
-
摘要: 为最大限度提高东营凹陷陆相页岩油水平井全生命周期累计采油量,开展了强化缝网改造合理生产制度研究。针对页岩油藏复杂的赋存和渗流机理,建立了页岩油藏双重介质两相流压–闷–采全周期流动表征模型,模拟研究了不同生产制度下(即不同闷井时间、自喷期和机采期的压降速度)的产量变化规律,初步探讨了生产制度的优化方法。根据模拟结果,得到了目标井的合理生产制度:闷井时间为60 d;自喷初期压降速度控制在0.06~0.10 MPa/d,自喷中期压降速度控制在0.02~0.04 MPa/d,自喷末期放液生产,快速将油压降至0;机采期控制压降速度保证油井持续生产,防止压力快速下降,地层基质供液不足。研究结果为优化东营凹陷陆相页岩油开发方案提供了理论依据,也为其他地区优化页岩油水平井生产制度提供了借鉴。Abstract: The reasonable production system for enhanced fracture network stimulation was studied to maximize the cumulative production in the full period of continental horizontal shale oil wells in the Dongying Sag. According to the complex storage and seepage mechanisms of the shale oil reservoir, a model was established to characterize the full period of fracturing, shut-in and oil production of two-phase flow in the dual media in shale oil reservoir. Production variation with the different production systems (different shut-in time and pressure drop rates in the flowing and pumping stages), and the method for production system optimization were preliminarily discussed by simulation. According to the simulation results, a reasonable production system for target wells was obtained. To be specific, the reasonable shut-in time was 60 days; the pressure drop rate was controlled to be 0.06–0.10 MPa/d at the early flowing stage and 0.02–0.04 MPa/d at the middle flowing stage; tapping was carried out at the last flowing stage to rapidly release the oil pressure to 0; the pressure drop rate was controlled to ensure continuous production of oil wells at the pumping stage, avoiding insufficient liquid supply from the formation matrix due to excessively fast pressure drop. The research results can provide a theoretical guidance for development optimization of continental shale oil in the Dongying Sag, and also provide references for the optimization of production systems for horizontal shale oil wells in other regions.
-
-
表 1 自喷期均匀压降优化设计方案
Table 1 Optimal design of the uniform pressure drop scheme at the flowing stage
模拟方案 压降速度/(MPa·d–1) 控制压降时间/d 1 0.10 194 2 0.08 242 3 0.06 323 4 0.04 485 5 0.02 970 表 2 自喷期梯度压降方案优化设计结果
Table 2 Optimal design results of the gradient pressure drop scheme at the flowing stage
方案 压降速度/(MPa·d–1) 控制压降时间/d 阶段1 阶段2 阶段3 阶段4 阶段5 阶段1 阶段2 阶段3 阶段4 阶段5 1 0.10 0.08 0.06 0.04 0.02 40 50 67 100 至油压为0 2 0.10 0.08 0.06 0.04 0.02 10 25 67 150 至油压为0 3 0.10 0.08 0.06 0.04 0.02 70 25 67 150 至油压为0 4 0.02 0.04 0.06 0.08 0.10 200 100 67 50 至油压为0 5 0.02 0.04 0.06 0.08 0.10 50 6 67 75 至油压为0 6 0.02 0.04 0.06 0.08 0.10 350 150 67 25 至油压为0 -
[1] SU Yuliang, ZHANG Qi, WANG Wendong. Performance analysis of a composite dual-porosity model in multi-scale fractured shale reservoir[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1107–1118. doi: 10.1016/j.jngse.2015.07.046
[2] 苏玉亮,鲁明晶,李萌,等. 页岩油藏多重孔隙介质耦合流动数值模拟[J]. 石油与天然气地质,2019,40(3):645–652. doi: 10.11743/ogg20190319 SU Yuliang, LU Mingjing, LI Meng, et al. Numerical simulation of shale oil coupled flow in multi-pore media[J]. Oil & Gas Geology, 2019, 40(3): 645–652. doi: 10.11743/ogg20190319
[3] SONG Wenhui, YAO Jun, LI Yang, et al. Apparent gas permeability in an organic-rich shale reservoir[J]. Fuel, 2016, 181: 973–984. doi: 10.1016/j.fuel.2016.05.011
[4] WANG Jing, LIU Huiqing, WANG Lei, et al. Apparent permeability for gas transport in nanopores of organic shale reservoirs including multiple effects[J]. International Journal of Coal Geology, 2015, 152: 50–62.
[5] 苏玉亮,盛广龙,王文东,等. 页岩气藏体积压裂有效改造体积计算方法[J]. 地球科学,2017,42(8):1314–1323. SU Yuliang, SHENG Guanglong, WANG Wendong, et al. A new approach to calculate effective stimulated reservoir volume in shale gas reservoir[J]. Earth Science, 2017, 42(8): 1314–1323.
[6] 崔明月,刘玉章,修乃领,等. 形成复杂缝网体积 (ESRV) 的影响因素分析[J]. 石油钻采工艺,2014,36(2):82–87. CUI Mingyue, LIU Yuzhang, XIU Nailing, et al. Analysis of factors affecting the formation of effective stimulated reservoir volume (ESRV)[J]. Oil Drilling & Production Technology, 2014, 36(2): 82–87.
[7] 刘华敏,李牧,刘乔平,等. 涪陵页岩气田柱塞气举工艺研究与应用[J]. 石油钻探技术,2020,48(3):102–107. doi: 10.11911/syztjs.2020022 LIU Huamin, LI Mu, LIU Qiaoping, et al. Research and application of plunger gas lift technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102–107. doi: 10.11911/syztjs.2020022
[8] 赵习森,李立,黄志明,等. 凝析气藏反凝析规律与生产制度关系优化研究[J]. 石油钻探技术,2006,34(6):71–73. doi: 10.3969/j.issn.1001-0890.2006.06.023 ZHAO Xisen, LI Li, HUANG Zhiming, et al. Optimizing the relationship between condensate properties and production regulations of condensate gas reservoir[J]. Petroleum Drilling Techniques, 2006, 34(6): 71–73. doi: 10.3969/j.issn.1001-0890.2006.06.023
[9] SHENG Guanglong, JAVADPOUR F, SU Yuliang, et al. A semianalytic solution for temporal pressure and production rate in a shale reservoir with nonuniform distribution of induced fractures[J]. SPE Journal, 2019, 24(4): 1856–1883. doi: 10.2118/195576-PA
[10] SHENG Guanglong, SU Yuliang, WANG Wendong, et al. Application of fractal geometry in evaluation of effective stimulated reservoir volume in shale gas reservoirs[J]. Fractals, 2017, 25(4): 1740007.
[11] CAN B, KABIR C S S. Probabilistic production forecasting for unconventional reservoirs with stretched exponential production decline model[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(1): 41–50.
[12] DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 377–387.
[13] CHAUDHARY A S, EHLIG-ECONOMIDES C, WATTENBARGER R. Shale oil production performance from a stimulated reservoir volume[R]. SPE 147596, 2011.
[14] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001 ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
[15] 陈志明,陈昊枢,廖新维,等. 基于试井分析的新疆吉木萨尔页岩油藏人工缝网参数反演研究[J]. 石油科学通报,2019,4(3):263–272. CHEN Zhiming, CHEN Haoshu, LIAO Xinwei, et al. A well-test based study for parameter estimations of artificial fracture networks in the Jimusar shale reservoir in Xinjiang[J]. Petroleum Science Bulletin, 2019, 4(3): 263–272.
[16] 许锋,姚约东,吴承美,等. 温度对吉木萨尔致密油藏渗吸效率的影响研究[J]. 石油钻探技术,2020,48(5):100–104. doi: 10.11911/syztjs.2020114 XU Feng, YAO Yuedong, WU Chengmei, et al. Effect of temperature on the imbibition efficiency of the Jimusar tight oil reservoir[J]. Petroleum Drilling Techniques, 2020, 48(5): 100–104. doi: 10.11911/syztjs.2020114
[17] 庞彦明,王永卓,王瑞,等. 松辽盆地古龙页岩油水平井试采分析及产能预测[J]. 大庆石油地质与开发,2020,39(3):137–146. PANG Yanming, WANG Yongzhuo, WANG Rui, et al. Production test analysis and productivity prediction of horizontal wells in Gulong shale oil reservoirs, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 137–146.
[18] 董岩,徐东升,钱根葆,等. 吉木萨尔页岩油“甜点”预测方法[J]. 特种油气藏,2020,27(3):54–59. doi: 10.3969/j.issn.1006-6535.2020.03.009 DONG Yan, XU Dongsheng, QIAN Genbao. Shale oil“sweet-spot”prediction in Jimusar Sag[J]. Specail Oil & Gas Reservoirs, 2020, 27(3): 54–59. doi: 10.3969/j.issn.1006-6535.2020.03.009
[19] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007 FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007
[20] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036 YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
[21] 赵贤正,周立宏,赵敏,等. 陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):589–600. doi: 10.3969/j.issn.1672-7703.2019.05.006 ZHAO Xianzheng, ZHOU Lihong, ZHAO Min, et al. Breakthrough and practice of industrial development on continental shale oil: a case study on Kong-2 Member in Cangdong Sag, Bohai Bay Basin[J]. China Petroleum Exploration, 2019, 24(5): 589–600. doi: 10.3969/j.issn.1672-7703.2019.05.006
[22] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[23] 石建刚,席传明,熊超,等. 吉木萨尔页岩油藏超长水平井水平段长度界限研究[J]. 特种油气藏,2020,27(4):136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021 SHI Jiangang, XI Chuanming, XIONG Chao, et al. Lateral length limit of ultra-long horizontal well in Jimsar shale oil reservoir[J]. Special Oil & Gas Reserviors, 2020, 27(4): 136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021
[24] OZKAN S, DUMAN R. Economic evaluation of Marcellus and Utica under the effects of dynamic market and development conditions[R]. SPE 177321, 2015.
[25] ZHANG Z, CLARKSON C, WILLIAMS-KOVACS J D, et al. Rigorous estimation of the initial conditions of flowback using a coupled hydraulic-fracture/dynamic-drainage-area leakoff model constrained by laboratory geomechanical data[J]. SPE Journal, 2020, 25(6): 3051–3078. doi: 10.2118/201095-PA
-
期刊类型引用(9)
1. 胥超绮. 涪陵页岩气田可试压延时趾端滑套应用存在的问题及原因分析. 江汉石油职工大学学报. 2024(01): 33-35 . 百度学术
2. 刘奔. 电子趾端压裂滑套的研制与试验. 石油机械. 2024(06): 103-108 . 百度学术
3. 刘海龙,苏怀宇,马鑫兆,关子越,唐浩,郭玲,鲁文婷. 固井趾端滑套研制与现场试验. 钻采工艺. 2024(05): 120-126 . 百度学术
4. 刘海龙,曾伟,阿力亚哈,西尔艾力,王佳,田志华. 水平井首段趾端阀技术试验与评价. 机械工程师. 2023(01): 54-56 . 百度学术
5. 赵广民,王志恒,赵敏琦,薄婷婷,安全成,张华光,任勇. 套管滑套压裂生产一体化管柱的应用. 钻采工艺. 2023(04): 162-166 . 百度学术
6. 魏辽. 基于井况的趾端滑套应用分析与结构改进. 天然气工业. 2022(S1): 102-105 . 百度学术
7. 王斌,郭岩宝,田晓雨,刘奔,魏辽,王德国. 水平井压裂装置智能趾端滑套设计. 石油矿场机械. 2021(05): 52-59 . 百度学术
8. 黄婷,苏良银,达引朋,杨立安. 超低渗透油藏水平井储能压裂机理研究与现场试验. 石油钻探技术. 2020(01): 80-84 . 本站查看
9. 黎伟,夏杨,陈曦. RFID智能滑套设计与试验研究. 石油钻探技术. 2019(06): 83-88 . 本站查看
其他类型引用(3)