Key Technologies for Drilling and Completion of Horizontal Shale Oil Wells in the Jiyang Depression
-
摘要: 济阳坳陷页岩油地质条件复杂,水平井钻井完井过程中面临安全风险高、机械钻速低、井眼轨迹控制效率低、复杂时效高和固井质量差等技术难题。通过钻井工程优化设计、页岩油水平井提速提效、高性能合成基钻井液和页岩油水平井固井等技术攻关与集成应用,初步形成了济阳坳陷页岩油水平井钻井完井关键技术,并在8口页岩油水平井进行了成功应用,平均完钻井深4 402.60 m,平均机械钻速8.86 m/h,实现了济阳坳陷页岩油水平井千米水平段一趟钻完钻,复杂时效大幅降低。研究与应用结果表明,该技术能为济阳坳陷页岩油资源的有效开发提供技术支持,对我国其他页岩油区块的勘探开发也有一定的借鉴作用。Abstract: Since the geological conditions of the shale oil reservoir in the Jiyang Depression are complex, there are many technical difficulties during the drilling and completion of horizontal wells, such as high safety risk, low rate of penetration (ROP), low efficiency of wellbore trajectory control, high complex efficiency, and poor cementing quality, etc. The key technologies for the drilling and completion of horizontal shale oil wells in the Jiyang Depression were preliminarily developed, benefiting from the exploration and integrated application of optimization design of drilling engineering, ROP and efficiency enhancement for the horizontal wells, development of high-performance synthetic base drilling fluid, and cementing quality improvement of the horizontal wells. Moreover, these technologies were successfully applied to eight horizontal shale oil wells. The average drilling depth and average ROP were 4402.60 m and 8.86 m/h, respectively, indicating that one-trip drilling was realized in the kilometric horizontal section of horizontal shale oil wells in the Jiyang Depression and thus the complex efficiency was lowered significantly. This study can provide technical support for the effective development of shale oil resources in the Jiyang Depression and a reference for best practices in the exploration and development of other shale oil blocks in China.
-
-
表 1 水力振荡器在3口页岩油水平井钻井中的应用效果统计
Table 1 Application effect of hydraulic oscillators in the drilling of three horizontal shale oil wells
井号 进尺/m 纯钻时间/h 机械钻速/(m·h–1) 纯钻时效,% YYP1 676 117.0 5.78 39.87 FYP1 744 169.5 4.39 38.62 BYP5 573 92.0 6.23 41.26 表 2 济阳坳陷3口页岩油水平井旋转导向系统应用效果
Table 2 Application effect of a rotary steering system in three horizontal shale oil wells in Jiyang Depression
井号 钻进井段/m 进尺/m 机械钻速/(m·h–1) 最大井斜角/(°) YYP1 3729~4591 862 10.64 91.30 FYP1 3327~4614 1287 5.70 87.08 BYP5 4048~5379 1331 11.81 82.13 表 3 3种基础油主要物化性能对比
Table 3 Comparison of physicochemical properties among three base oils
基础油 闪点/
℃密度/
(kg·L–1)运动黏度/
(mm2·s–1)芳烃含
量,%苯胺点/
℃倾点/
℃柴油 57~63 0.86 3.4 30.00~60.00 54~60 –17.8 白油 113 0.83 3.8~8.2 3.90 92 –30.0 气制油 125 0.80 2.8 <0.01 >85 –40.0 表 4 合成基钻井液抗温性能试验结果
Table 4 Temperature resistance of synthetic base drilling fluid
试验条件 破乳电压/
V静切力/
Pa塑性黏度/
(mPa·s)动切力/
PaAPI滤失量/
mL室温 1160 5.0/9.0 42 10.0 0.8 120 ℃/16 h >2000 5.0/12.0 40 11.0 0 150 ℃/16 h 1600 6.0/14.0 37 14.0 0.2 180 ℃/16 h 1000 6.5/15.0 45 15.5 0.4 200 ℃/16 h 800 5.0/8.0 58 8.0 0.8 205 ℃/16 h 750 4.0/7.0 59 7.5 1.0 表 5 济阳坳陷8口页岩油水平井钻井情况统计
Table 5 Drilling results of eight horizontal shale oil wells in the Jiyang Depression
井号 井深/
m垂深/
m钻井周期/
d钻速/
(m·h–1)水平段长/
m备注 BYP1 4336.00 2969.75 75.50 8.13 1147.00 第一
轮次BYP 2 3645.00 2568.29 85.88 10.53 716.00 LY1HF 3970.00 3206.57 132.50 3.84 633.00 BYP 1-2 3542.00 2989.91 50.83 6.08 373.00 YYP1 4902.00 3540.52 88.05 12.16 942.00 第二
轮次FYP1 5364.00 3564.57 108.87 8.18 1716.00 NY1-1HF 4083.00 3619.87 80.92 9.81 158.00 BYP5 5379.00 4309.30 131.00 12.17 1059.59 -
[1] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004 SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
[2] 张瀚之,翟晓鹏,楼一珊. 中国陆相页岩油钻井技术发展现状与前景展望[J]. 石油钻采工艺,2019,41(3):265–271. ZHANG Hanzhi, ZHAI Xiaopeng, LOU Yishan. Development status and prospect of the drilling technologies used for continental shale oil reservoirs in China[J]. Oil Drilling & Production Technology, 2019, 41(3): 265–271.
[3] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率,2019,26(1):1–12. SONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1–12.
[4] 雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017 LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
[5] 李世臻, 刘卫彬, 王丹丹, 等. 中美陆相页岩油地质条件对比[J].地质论评, 2017, 63(增刊1): 39–40. LI Shizhen, LIU Weibin, WANG Dandan, et al. Continental shale oil geological conditions of China and the United States[J]. Geological Review, 2017, 63(supplement 1): 39–40.
[6] 关德范. 对美国和中国页岩油气资源的对比分析与思考[J]. 中外能源,2015,20(12):19–27. GUAN Defan. A comparative study and reflection on shale oil and gas resources in US and China[J]. Sino-Global Energy, 2015, 20(12): 19–27.
[7] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058 YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
[8] 宁方兴. 济阳坳陷页岩油富集机理[J]. 特种油气藏,2015,22(3):27–30. doi: 10.3969/j.issn.1006-6535.2015.03.006 NING Fangxing. Mechanism of shale oil enrichment in Jiyang Depression[J]. Special Oil & Gas Reservoirs, 2015, 22(3): 27–30. doi: 10.3969/j.issn.1006-6535.2015.03.006
[9] 刘丽,闵令元,孙志刚,等. 济阳坳陷页岩油储层孔隙结构与渗流特征[J]. 油气地质与采收率,2021,28(1):106–114. LIU Li, MIN Lingyuan, SUN Zhigang, et al. Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 106–114.
[10] 张顺. 济阳坳陷页岩油富集要素及地质甜点类型划分[J]. 科学技术与工程,2021,21(2):504–511. ZHANG Shun. Shale oil enrichment elements and geological dessert types in Jiyang Depression[J]. Science Technology and Engineering, 2021, 21(2): 504–511.
[11] 宁方兴,王学军,郝雪峰,等. 济阳坳陷不同岩相页岩油赋存机理[J]. 石油学报,2017,38(2):185–195. NING Fangxing, WANG Xuejun, HAO Xuefeng, et al. Occurrence mechanism of shale oil with different lithofacies in Jiyang Depression[J]. Acta Petrolei Sinica, 2017, 38(2): 185–195.
[12] 包友书. 济阳坳陷超压和应力场对页岩油富集的影响[J]. 断块油气田,2018,25(5):585–588. BAO Youshu. Influence of overpressure and stress on shale oil enrichment in Jiyang Depression[J]. Fault-Block Oil & Gas Field, 2018, 25(5): 585–588.
[13] 袁琪,燕明慧,杨依. 济阳坳陷沙三下与沙四上页岩油富集原理[J]. 当代化工研究,2016(6):116–117. YUAN Qi, YAN Minghui, YANG Yi. Theory of oil enrichment on lower third sub-member and upper fourth sub-member shale of Jiyang Depression[J]. Modern Chemical Research, 2016(6): 116–117.
[14] 刘鹏,陶国亮,黎茂稳,等. 渤海湾盆地济阳坳陷樊页1井页岩油与临近页岩中含氮化合物组成特征[J]. 石油实验地质,2020,42(4):552–557. LIU Peng, TAO Guoliang, LI Maowen, et al. Characteristics of nitrogen-containing compounds in shale oil and adjacent shales in Well FY 1, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 2020, 42(4): 552–557.
[15] 光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1–6. GUANG Xinjun, YE Haichao, JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(1): 1–6.
[16] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036 YANG Can, WANG Peng, RAO Kaibo, et al. Key drilling technology of horizontal well in shale oil reservoir in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
[17] 张廷山,彭志,杨巍,等. 美国页岩油研究对我国的启示[J]. 岩性油气藏,2015,27(3):1–10. doi: 10.3969/j.issn.1673-8926.2015.03.001 ZHANG Tingshan, PENG Zhi, YANG Wei, et al. Enlightenments of American shale oil research towards China[J]. Lithologic Reservoirs, 2015, 27(3): 1–10. doi: 10.3969/j.issn.1673-8926.2015.03.001
[18] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[19] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[20] 叶海超,光新军,王敏生,等. 北美页岩油气低成本钻完井技术及建议[J]. 石油钻采工艺,2017,39(5):552–558. YE Haichao, GUANG Xinjun, WANG Minsheng, et al. Low-cost shale oil and gas drilling and completion technologies used in the North America and the suggestions[J]. Oil Drilling & Production Technology, 2017, 39(5): 552–558.
[21] 万绪新. 渤南区块页岩油地层油基钻井液技术[J]. 石油钻探技术,2013,41(6):44–50. doi: 10.3969/j.issn.1001-0890.2013.06.009 WAN Xuxin. Oil-based drilling fluid applied in drilling shale oil reservoirs in Bonan Block[J]. Petroleum Drilling Techniques, 2013, 41(6): 44–50. doi: 10.3969/j.issn.1001-0890.2013.06.009
[22] 郝运轻,宋国奇,周广清,等. 济阳坳陷古近系泥页岩岩石学特征对可压性的影响[J]. 石油实验地质,2016,38(4):489–495. doi: 10.11781/sysydz201604489 HAO Yunqing, SONG Guoqi, ZHOU Guangqing, et al. Influence of petrological characteristics on fracability of the Paleogene shale, Jiyang Depression[J]. Petroleum Geology and Experiment, 2016, 38(4): 489–495. doi: 10.11781/sysydz201604489
-
期刊类型引用(33)
1. 刘文堂,刘昱彤. 温度对油基钻井液黏度测定的影响因素分析. 石油石化节能与计量. 2025(01): 16-20 . 百度学术
2. 贾永红,周双君,段利波,逄凯迪,温杰,陈琳波. 抗180℃水基钻井液随钻堵漏剂的研制及性能评价. 化工设计通讯. 2025(01): 16-19 . 百度学术
3. 邓文彪,韩成,李文拓,魏佳,郭宇堃. 海上抗高温高密度油基钻井液技术及应用. 化学工程与装备. 2024(02): 33-36 . 百度学术
4. 许林,王晓棠,王晓亮,胡南琪,许明标,韩银府,位中伟,丁梓敬. 超支化高分子水基钻井液仿生润滑机理. 天然气工业. 2024(07): 120-131 . 百度学术
5. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 百度学术
6. 王长豹,程云,马诚,杨超,钟飞升,杨国兴. 裂缝性地层油基钻井液用堵漏材料的研究进展. 当代化工. 2024(11): 2621-2627 . 百度学术
7. 邓正强,欧猛,许桂莉,黄坤,梁睿,黄平,罗宇峰,胡嘉. 页岩气窄密度窗口地层封堵承压油基钻井液技术. 石油化工应用. 2023(03): 53-57 . 百度学术
8. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 . 百度学术
9. 陈建宏,汤柏松,罗伟,杜雪雷,方牧. 渤海西部海域某区块断层防漏、堵漏技术研究及应用. 天津科技. 2023(09): 28-30 . 百度学术
10. 董云峰,韩成. 油基钻井液堵漏体系及材料研究进展. 化工设计通讯. 2023(11): 37-39 . 百度学术
11. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 . 百度学术
12. 孙凯,刘化伟,明鑫,乐守群. 自201井区页岩气井水平段安全高效钻井技术. 钻探工程. 2022(02): 104-109 . 百度学术
13. 陈军,王平,李占超. 油基钻井液防漏堵漏理论与技术研究进展. 当代化工研究. 2022(12): 162-164 . 百度学术
14. 刘政,李茂森,蒋学光. 川渝页岩气井油膨胀随钻防漏治漏技术及应用. 天然气勘探与开发. 2021(01): 118-124 . 百度学术
15. 李伟,白英睿,李雨桐,王波,吕开河,张文哲,雷少飞. 钻井液堵漏材料研究及应用现状与堵漏技术对策. 科学技术与工程. 2021(12): 4733-4743 . 百度学术
16. 刘瑞,于培志. 油基钻井液随钻堵漏材料的研究与应用. 辽宁化工. 2021(06): 784-787+791 . 百度学术
17. 纪卫军,杨勇,闫永生,唐国旺. 一种油基钻井液用凝胶堵漏体系及其应用. 钻井液与完井液. 2021(02): 196-200 . 百度学术
18. 陈亮,胡进科,耿冬,李子钰. 重庆页岩气井油基钻井液堵漏防塌新工艺探索. 油气藏评价与开发. 2021(04): 527-535 . 百度学术
19. 陈军,陈小龙. 低成本延迟交联凝胶堵漏体系研究. 山东化工. 2020(06): 141-144+147 . 百度学术
20. 顾雪凡,王棚,高龙,陈刚,张洁. 我国天然高分子基钻井液体系研究进展. 西安石油大学学报(自然科学版). 2020(05): 83-91 . 百度学术
21. 刘政,李俊材,黄鸿. 准噶尔南缘油基膨胀型随钻防漏堵漏技术. 新疆石油天然气. 2020(02): 43-47+3 . 百度学术
22. 郝海洋,屈勇,何吉标,张家瑞,刘俊君. 页岩气水平井低密度防窜水泥浆增稠机理. 天然气勘探与开发. 2020(04): 131-137 . 百度学术
23. 代一钦. 油基钻井液条件下堵漏材料研究新进展. 江汉石油职工大学学报. 2020(06): 57-59 . 百度学术
24. 张杜杰,金军斌,陈瑜,康毅力. 深部裂缝性致密储层随钻堵漏材料补充时机研究. 特种油气藏. 2020(06): 158-164 . 百度学术
25. 袁青松,冯辉,张栋,李中明,代磊,董果果. 强封堵钻井液体系在河南页岩气钻井中的研究和应用. 钻井液与完井液. 2019(01): 29-35 . 百度学术
26. 马文英,刘昱彤,钟灵,刘文堂,孙东营,毛世发. 油基钻井液封堵剂研究及应用. 断块油气田. 2019(04): 529-532 . 百度学术
27. 宋保健,孙凯,乐守群,兰凯,明鑫. 涪陵页岩气田钻井提速难点与对策分析. 钻采工艺. 2019(04): 9-12+6 . 百度学术
28. 刘彦学. 松南气田低密度低伤害随钻堵漏钻井液技术. 钻井液与完井液. 2019(04): 442-448 . 百度学术
29. 曾德智,喻智明,何奇垚,刘乔平,施太和. 页岩气井环空带压安全风险定量评价方法研究. 西南石油大学学报(自然科学版). 2019(06): 146-154 . 百度学术
30. 王武斌. JY68-2井复杂情况钻井液预防与处理技术对策. 化工管理. 2018(08): 242 . 百度学术
31. 匡立新,刘卫东,甘新星,姜政华,陈士奎. 涪陵平桥南区块页岩气水平井钻井提速潜力分析. 石油钻探技术. 2018(04): 16-22 . 本站查看
32. 梁文利. 深层页岩气油基钻井液承压堵漏技术. 钻井液与完井液. 2018(03): 37-41 . 百度学术
33. 吴江,李龙,任冠龙,张崇. 海上复杂易垮塌地层高性能油基钻井液研发与应用. 钻井液与完井液. 2018(05): 55-60 . 百度学术
其他类型引用(4)