低温环境下钻柱材料力学特性试验及强度设计

王宴滨, 张辉, 高德利, 柯珂, 刘文红

王宴滨, 张辉, 高德利, 柯珂, 刘文红. 低温环境下钻柱材料力学特性试验及强度设计[J]. 石油钻探技术, 2021, 49(3): 35-41. DOI: 10.11911/syztjs.2021051
引用本文: 王宴滨, 张辉, 高德利, 柯珂, 刘文红. 低温环境下钻柱材料力学特性试验及强度设计[J]. 石油钻探技术, 2021, 49(3): 35-41. DOI: 10.11911/syztjs.2021051
WANG Yanbin, ZHANG Hui, GAO Deli, KE Ke, LIU Wenhong. Mechanical Properties Test and Strength Design of Drill String Materials in Low-Temperature Environments[J]. Petroleum Drilling Techniques, 2021, 49(3): 35-41. DOI: 10.11911/syztjs.2021051
Citation: WANG Yanbin, ZHANG Hui, GAO Deli, KE Ke, LIU Wenhong. Mechanical Properties Test and Strength Design of Drill String Materials in Low-Temperature Environments[J]. Petroleum Drilling Techniques, 2021, 49(3): 35-41. DOI: 10.11911/syztjs.2021051

低温环境下钻柱材料力学特性试验及强度设计

基金项目: 国家重点研发计划课题“钻井工艺及井筒工作液关键技术研究”(编号:2016YFC0303303)、国家自然科学基金青年科学基金项目“考虑温度和地层流体渗入共同影响的深水水下井筒环空带压产生机理及预测方法研究”(编号:51804321)、国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51821092)和中国石油大学(北京)科研基金“复杂工况深水钻井隔水管紧急解脱作业安全控制方法研究”(编号:2462020YXZZ031)联合资助
详细信息
    作者简介:

    王宴滨(1988—),男,山东潍坊人,2010年毕业于中国石油大学(北京)机械设计制造及其自动化专业,2016年获中国石油大学(北京)油气井工程专业博士学位,副教授,主要从事油气井力学与控制工程方面的研究。E-mail:wyb576219861@126.com

  • 中图分类号: TE22

Mechanical Properties Test and Strength Design of Drill String Materials in Low-Temperature Environments

  • 摘要: 低温条件下的钻柱强度校核与设计研究,对解决极地等低温环境下钻柱的技术问题具有重要意义。在低温和常温条件下,进行了G105钻杆和S135钻杆的力学特性试验,获取了2种材料的抗拉强度、屈服强度及冲击性能等参数随温度的变化规律,在此基础上,提出了低温环境下钻柱的强度设计方法。试验发现,随着温度降低,G105钻杆和S135钻杆的抗拉强度和屈服强度均升高,断面收缩率基本不变。在低温环境下,为保证钻柱的服役安全,钻柱的强度设计方法应由常温下应力控制转换为应力与应变共同控制。低温服役环境下进行钻柱强度设计时,钻柱材料的屈服强度应依照宽温区的材料强度特性取值。该研究结果对确保低温环境下钻柱的工程设计及服役安全具有指导意义。
    Abstract: Strength checking and design of drill strings at low temperature are crucial to solving the technical problems of drill string in low-temperature environments such as the Arctic region. In this paper, tests were carried out at both low and normal temperatures on drill string materials G105 and S135, and their temperature-dependent parameters including tensile strength, yield strength, and impact performance,etc. were obtained. On the basis of these results, the strength design method of drill strings in low-temperature environments was proposed. The results show that both tensile and yield strength of G105 and S135 increase as the temperature decreases while the cross section reduction rate remains unchanged. In low-temperature environments, it is important to note that to ensure the safety of the drill strings, their strength design should be controlled by both stress and strain, instead of only by stress in normal temperature environments. Yield strength of drill string materials should be determined according to the strength characteristics of the materials in the wide-temperature range. The results show that this study has directive significance to guarantee the engineering design of drill strings and their safety in low-temperature environments.
  • 图  1   G105钻杆拉伸试验结果

    Figure  1.   Tensile test results of drill string G105

    图  2   S135钻杆拉伸试验结果

    Figure  2.   Tensile test results of drill string S135

    图  3   G105钻杆夏比冲击试验结果

    Figure  3.   Charpy impact test results of drill string G105

    图  4   S135钻杆夏比冲击试验结果

    Figure  4.   Charpy impact test results of drill string S135

    图  5   不同温度下G105钻杆试样冲击断口的微观形貌

    Figure  5.   Micromorphology of impact fractures of drill string G105 samples at different temperatures

    图  6   不同温度下S135钻杆试样冲击断口的微观形貌

    Figure  6.   Micromorphology of impact fracture of of drill string S135 samples at different temperatures

  • [1] 陈远鹏,王志远,孙宝江,等. 极地钻井关键设备橡胶密封材料的优选[J]. 石油钻探技术,2020,48 (1):54–60. doi: 10.11911/syztjs.2019111

    CHEN Yuanpeng, WANG Zhiyuan, SUN Baojiang, et al. The optimization of rubber sealing materials for key equipment in polar drilling[J]. Petroleum Drilling Techniques, 2020, 48 (1): 54–60. doi: 10.11911/syztjs.2019111

    [2]

    MENZEMER C C, SRIVATSAN T S, ORTIZ R, et al. Influence of temperature on impact fracture behavior of an alloy steel[J]. Materials & Design, 2001, 22(8): 659–667.

    [3]

    STRAFFELIN G, FONTANARI V, MOLINARI A. Impact fracture toughness of porous alloys between room temperature and –60 °C[J]. Materials Science and Engineering: A, 1999, 272(2): 389–397. doi: 10.1016/S0921-5093(99)00494-3

    [4]

    SHIN H S, LEE H M, KIM M S. Impact tensile behaviors of 9% nickel steel at low temperature[J]. International Journal of Impact Engineering, 2000, 24 (6–7): 571–581. doi: 10.1016/S0734-743X(99)00181-5

    [5]

    LYU Baotong, ZHENG Xiulin. Predicting fatigue crack growth rates and thresholds at low temperatures[J]. Materials Science and Engineering: A, 1991, 148(2): 179–188. doi: 10.1016/0921-5093(91)90820-D

    [6] 舒志强,欧阳志英,袁鹏斌. 拉扭复合载荷条件下V150钻杆的力学性能研究[J]. 石油钻探技术,2019,47(2):68–73. doi: 10.11911/syztjs.2018140

    SHU Zhiqiang, OUYANG Zhiying, YUAN Pengbin. The mechanical performance of V150 drill pipe under combined tension-torsion loading[J]. Petroleum Drilling Techniques, 2019, 47(2): 68–73. doi: 10.11911/syztjs.2018140

    [7] 李皓,曾德智,高定祥,等. 5135钻杆接头缺口疲劳行为研究[J]. 石油钻探技术,2019,47(4):64–69. doi: 10.11911/syztjs.2019013

    LI Hao, ZENG Dezhi, GAO Dingxiang, et al. A study of the notch fatigue behavior of S135 drill pipe joint[J]. Petroleum Drilling Techniques, 2019, 47(4): 64–69. doi: 10.11911/syztjs.2019013

    [8] 王元清,王晓哲,武延民. 结构钢材低温下主要力学性能指标的试验研究[J]. 工业建筑,2001,31(12):63–65. doi: 10.3321/j.issn:1000-8993.2001.12.022

    WANG Yuanqing, WANG Xiaozhe, WU Yanmin. The experimental study on the main mechanical parameters of structural steel under low temperature[J]. Industrial Construction, 2001, 31(12): 63–65. doi: 10.3321/j.issn:1000-8993.2001.12.022

    [9] 牛延龙,刘清友,贾书君,等. X80级高强低合金管线钢组织与冲击韧性[J]. 钢铁,2019,54(2):67–74, 96.

    NIU Yanlong, LIU Qingyou, JIA Shujun, et al. Microstructure and impact toughness of X80 grade high strength low alloy pipeline steel[J]. Iron & Steel, 2019, 54(2): 67–74, 96.

    [10] 王鹏, 池强, 杜伟, 等.低温服役环境下高强度管线钢管的力学性能[J].油气储运, 39(中俄东线): 1–5.

    WANG Peng, CHI Qiang, DU Wei, et al. Mechanical properties of high strength pipe in low temperature service environment[J]. Oil & Gas Storage and Transportation, 39(China Russia east line): 1–5.

    [11] 冯宝锐,王元清,石永久. 低温下铁路钢轨钢材的断口与弹塑性断裂韧性分析[J]. 低温建筑技术,2007(3):29–32. doi: 10.3969/j.issn.1001-6864.2007.03.015

    FENG Baorui, WANG Yuanqing, SHI Yongjiu. Analysis on CTOD and J integral of rail steel under low temperature[J]. Low Temperature Architecture Technology, 2007(3): 29–32. doi: 10.3969/j.issn.1001-6864.2007.03.015

    [12] 秦江阳,王印培,柳曾典,等. 低合金钢焊缝韧脆转变区断裂韧性JIC试验研究[J]. 动力工程,2001,21(03):1275–1279.

    QIN Jiangyang, WANG Yinpei, LIU Zengdian, et al. Investigate on low alloy high strength steel weld-meta1 fracture toughness JIC test in Doctile-Britle transition region[J]. Power Engineering, 2001, 21(03): 1275–1279.

    [13] 赵源嫄.60Si2Mn钢低温拉伸及应力松弛行为研究[D].哈尔滨: 哈尔滨工业大学, 2009.

    ZHAO Yuanyuan. Study on tensile behaviour under low temperature and stress relaxation of 60Si2Mn steel[D]. Harbin:Harbin Institute of Technology, 2009.

    [14] 金晓鸥,何世禹,张松榆. 欠时效态3J21合金低温拉伸性能[J]. 材料工程,2007(10):3–6, 17. doi: 10.3969/j.issn.1001-4381.2007.10.001

    JIN Xiaoou, HE Shiyu, ZHANG Songyu. Tensile properties of under aged 3J21 alloy at low temperatures[J]. Journal of Materials Engineering, 2007(10): 3–6, 17. doi: 10.3969/j.issn.1001-4381.2007.10.001

    [15] 李方坡,丁一明,许天旱,等. U165超高强度钻杆钢显微结构分析及低温拉伸性能研究[J]. 热加工工艺,2020,49(4):29–33.

    LI Fangpo, DING Yiming, XU Tianhan, et al. Microstructure analysis and tensile properties at low temperature of U165 ultra high strength drill pipe steel[J]. Hot Working Technology, 2020, 49(4): 29–33.

    [16] 郭西水,施太和,曾德智,等. 超高强度钻柱低温断裂性能及裂纹扩展特征研究[J]. 安全与环境学报,2017,17(1):63–67.

    GUO Xishui, SHI Taihe, ZENG Dezhi, et al. On the fracture properties and crack extension features of the ultra-high tough drill rod under low temperatures[J]. Journal of Safety and Environment, 2017, 17(1): 63–67.

  • 期刊类型引用(8)

    1. 张欣. 华家地区水平井个性化部署及模式化导向技术. 石油知识. 2024(01): 58-59 . 百度学术
    2. 肖元相,解永刚,李明瑞,唐梅荣,陈宝春,周长静,邝聃,李达,苏煜彬,段志锋,刘欣佳. 铝土岩储层水平井完井分段压裂关键技术及应用——以鄂尔多斯盆地陇东地区太原组为例. 天然气地球科学. 2024(08): 1467-1479 . 百度学术
    3. 蔡东胜,孙梦慈,马洪亮,杨浩. 宁庆区块低固相阳离子聚合物钻井液技术研究与试验. 应用化工. 2024(12): 2832-2837 . 百度学术
    4. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    5. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    6. 李云峰,徐吉,徐小峰,朱宽亮,吴艳. 南堡2号构造深层潜山水平井钻井完井技术. 石油钻探技术. 2018(02): 10-16 . 本站查看
    7. 赵宏波,季伟,王冲,李兴宝,陈国飞. 榆林气田标志层法和沉积旋回法水平井导向技术. 石油钻探技术. 2018(06): 39-46 . 本站查看
    8. 张时中. 三种钻井提速工具在陇东气田的应用研究. 河南科技. 2018(14): 115-117 . 百度学术

    其他类型引用(1)

图(6)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  248
  • PDF下载量:  90
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-05-10
  • 网络出版日期:  2021-05-17
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回