Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea
-
摘要: 北极油气资源丰富,但其低温、浅层灾害、冻土层、井筒处于大温变条件等地质、环境因素给钻井作业带来诸多挑战,为此,在“十三五”期间,中国石化以钻井安全环保高效为总目标,以解决钻井装备及工具、钻井工艺及措施、井筒工作流体的“冷”适应性问题为核心,进行了钻井灾害风险评价控制与环保、钻井关键装备及工具、钻井工艺与井筒工作液等关键技术研究,在浅层气、天然气水合物灾害地层的定量风险评价方法、–50 ℃低温轨道钻机及钻井工具、冻土层井壁稳定性评价与控制技术、低温钻井液与固井水泥浆等工程技术方面取得了重要进展,初步形成了极地冷海钻井关键技术体系。随着北极油气开发,陆地上将进入更高纬度、更厚永冻层区域,海洋上将向更深水域、常年冰或更厚浮冰海域进军,极地冷海钻井将面临更大的挑战,需要进一步完善极地冷海钻井完井技术理论与方法,研制新型钻井完井关键装备与工具,形成较为完善的极地冷海钻井完井技术体系,以满足北极地区油气藏高效勘探开发的需求,提升我国石油公司在极地油气合作项目中的经济效益和核心竞争力。Abstract: The Arctic area is rich in oil and gas resources. However, its geological and environmental factors such as low temperature, shallow hazards, permafrost and extreme temperature change in wellbore bring many challenges to drilling operation. For this reason, during the "Thirteenth Five-Year Plan" period, Sinopec took safety, environmental protection and efficient drilling as its overall goals and focused on solving the problem of "cold" adaptability of drilling equipments and tools, drilling technologies and measures, wellbore working fluids. Research was performed on key technologies regarding drilling hazard assessment and control, environmental protection, key drilling equipments and tools, drilling techniques, wellbore working fluids, etc. Impressive progresses were made in the quantitative risk assessment method for hazards to shallow gas and gas hydrate formations, the orbital drilling rigs and tools utilized at −50 °C, stability evaluation and borehole stability control in permafrost, and engineering technologies related to drilling fluid and cement slurry under low temperature conditions. As a result, the key technology system of drilling in the Arctic sea was preliminarily developed. As the Arctic oil and gas development enters higher latitudes and thicker permafrost regions on land, and the oceans will advance to deeper waters, perennial ice or thicker ice floes, drilling in Arctic sea will face greater challenges and requires further progress. Therefore, it is necessary to build a complete drilling and completion technology system in the Arctic sea by improving the theories and methods and developing new key equipments and tools. With the system, the demands of efficient exploration and development of oil and gas reservoirs in the Arctic region can be realized, thereby enhancing the economic benefits and core competitiveness of China’s oil companies in international cooperation projects of oil and gas development in this area.
-
我国碳酸盐岩油气资源丰富,已经成为油气勘探开发的重要领域。碳酸盐岩储层具有埋藏深、超高温、超高压、非均质性强和孔隙缝洞发育等特征,大部分井需要进行酸化压裂才能投产[1-8]。缝洞型碳酸盐岩储层由于存在天然裂缝和孔洞体,孔洞体会导致附近应力场发生改变,从而影响水力裂缝的扩展方式和延伸路径[9]。因此,有必要开展孔洞型碳酸盐岩储层压裂缝扩展机理研究,为经济高效开发碳酸岩盐储层提供技术支持。
目前,国内外学者针对砂岩、页岩等储层水力压裂裂缝起裂扩展机理开展了大量研究工作[10-21]。由于碳酸盐岩储层存在孔洞和天然裂缝,水力裂缝的扩展十分复杂,并不一定沿预设路径进行扩展,难以达到充分改造储层的目的。为此,笔者通过物理模拟试验建立了含孔洞碳酸盐岩定向压裂裂缝扩展模拟方法,结合数值方法研究了水平地应力差异对不同孔洞体特征下水力裂缝扩展路径的作用机制,明确了孔洞体对水力裂缝起裂和扩展的影响。
1. 试样制备与试验方法
1.1 试样制备
碳酸盐岩天然露头不易取得,而且即使取得天然露头,也难以识别与评价大尺寸试样内部原有天然裂缝及孔洞系统分布。因此,采用人工制备的含孔洞碳酸盐岩试样,开展水力压裂试验。利用鸡蛋壳模拟孔洞体,结合缝洞型碳酸盐岩储层的物性参数及地质特征,选用PC52.5R复合硅酸盐水泥和70目石英砂制备试样。通过测试水泥与石英砂按不同质量比制备试样的单轴抗压和抗拉强度,确定水泥与石英砂按1∶1质量比制备尺寸300 mm×300 mm×300 mm含孔洞体特征的人工试样,用于进行孔洞型试样定向压裂试验。制作人工试样时,在模具上标记位置,将蛋壳体放置在预制井筒两侧沿最大水平主应力方向的中间位置,并保证蛋壳体中心位于立方体试样的中心平面上(见图1),采用一次性整体浇筑方式浇筑。
1.2 水力压裂试验方案
为研究水平地应力差异对孔洞型碳酸盐岩压裂缝扩展路径的影响,采用鸡蛋壳预制固定孔洞尺寸的人工试样。结合顺北地区碳酸盐岩储层地应力实际情况,设定室内压裂试验的三向加载应力,在此基础上改变地应力差异系数。试验参数如表1所示,三向地应力加载如图2所示,压裂液黏度为50 mPa·s。
表 1 碳酸盐岩试样压裂试验参数Table 1. Fracturing test parameters of carbonate rock samples试样 应力差
异系数k{\sigma_{⃑\text{v}}} /
MPa{\sigma _{\text{H}}} /
MPa{\sigma _{\text{h}}} /
MPaQ/(mL·min−1) D1 0.36 18 15 11 5 D2 0.25 18 15 12 5 D3 0.15 18 15 13 5 D4 0.07 18 15 14 5 2. 水力压裂试验结果与分析
2.1 泵压曲线特征分析
不同试样的水力裂缝扩展泵压–时间曲线如图3所示。由图3可以看出:试样D1所对应的泵压–时间曲线出现2个峰值,表明泵压在第一次达到峰值时试样发生破裂,但未形成贯穿通道;泵压降低后,随着继续泵注压裂液,泵压升高,再次出现峰值,但低于初次峰值,泵压第二次达到峰值降低后维持在一个相对稳定的值,表明泵压主要克服施加的三向地应力,已经形成贯穿通道。试样D2所对应泵压–时间曲线只出现一个峰值,表明在泵压达到峰值时就形成了贯穿通道,由于围压的存在,泵压维持在一个相对稳定的值。试样D3和D4所对应泵压–时间曲线均出现多个峰值,泵压在第一次达到峰值时裂缝起裂扩展,随后泵压出现多次降低升高的过程,表明水力裂缝在不断扩展,并有新的裂缝通道开启,且试样D4所对应泵压–时间曲线反复降低升高的时间范围大于试样D3。
不同水平主应力差下试样的破裂压力如图4所示。由图4可以看出,随着水平主应力差增大,试样所对应的破裂压力逐渐降低。
2.2 碳酸盐岩裂缝形态特征
图5为试样D1水力裂缝的形态。由图5可以看出,试样D1的水力裂缝沿最大水平主应力方向起裂扩展,遇到孔洞后直接穿过孔洞并继续沿原扩展方向延伸,水力裂缝未发生转向,从而形成一条垂直于最小水平主应力的破裂面。
图6为试样D2水力裂缝的形态。由图6可以看出:试样D2的水力裂缝沿最大水平主应力方向起裂扩展,裂缝扩展到孔洞附近时路径并没有发生改变;由该试样水力裂缝表面示踪剂分布范围可知,孔洞右侧没有示踪剂分布,表明水力裂缝沿着最大水平主应力一直扩展到孔洞体边界,随后因为孔洞体的存在裂缝停止扩展,形成一道垂直于最小水平主应力的破裂面。
试样D3孔洞体周围没有红色示踪剂(见图7),但可以观察到孔洞体的存在,说明水力裂缝扩展到孔洞体附近时,沿最小水平主应力方向发生转向但偏转距离不大。试样D4破裂面左半面完全被红色示踪剂浸染(见图8),且无法观察到孔洞体的存在,说明水力裂缝扩展到孔洞体附近时发生转向,扩展路径完全绕过了孔洞体。可以看出,试样D4水力裂缝的转向效果比试样D3更明显,水力裂缝开始转向的位置与井筒的距离也更近。
2.3 水平主应力差异系数对水力裂缝扩展的影响
总结了不同水平主应力差异系数下水力裂缝的形态,结果见图9。由图9可以看出:水平主应力差异系数k为0.07时,孔洞体的存在改变了水平主应力差对水力裂缝扩展的主导地位;水平主应力差异系数k为0.15时,水平主应力差对水力裂缝的扩展路径起主导作用,由于孔洞体产生的应力集中无法改变水平主应力差对水力裂缝扩展的主控地位,水力裂缝均沿最大水平主应力方向起裂扩展,形成一条完整的垂直于最小水平主应力的破裂面,但不同条件下孔洞体与裂缝的交互作用不同;水平主应力差异系数k为0.25时,水力裂缝扩展到孔洞体边界时会被孔洞体捕捉,不再继续沿原路径向前扩展;水平主应力差异系数k为0.36时,水力裂缝扩展到孔洞体时会穿过孔洞,并继续向前扩展。由以上分析可以看出,水平主应力差异系数为0.15~0.36时,水平主应力差异系数越小,孔洞体对水力裂缝的排斥作用越明显,水力裂缝越容易发生转向,对应的转向半径越大,水力裂缝会绕过孔洞体继续扩展,水力裂缝扩展过程中与最大水平主应力方向上孔洞体的交互作用有绕过孔洞、被孔洞体捕获和穿过孔洞体等3种交互模式。
通过分析不同水平主应力差异系数下含预制孔洞试样水力压裂试验结果,得到水平主应力差异系数对水力裂缝扩展的影响规律:
1)k≤0.15时,水力裂缝遇到孔洞体会产生非平面扩展,且水平主应力差异系数越小,转向半径越大,水力裂缝的形态越复杂。
2)0.15<k<0.36时,水平主应力差会克服孔洞体应力集中形成沿平面扩展的主裂缝,室内试验条件下主裂缝遇到孔洞体后会被孔洞体所捕捉,无法穿过孔洞体继续扩展。
3)k≥0.36时,水平主应力差会克服孔洞体应力集中,水力裂缝沿平面扩展,主裂缝扩展路径上遇到孔洞体后会直接穿过孔洞体继续扩展。随着水平主应力差增大,破裂压力逐渐降低。
3. 孔洞型碳酸盐岩压裂数值模拟分析
水平主应力差对水力裂缝扩展路径影响明显,由于真三轴压裂物理模拟试验无法在更大尺度上模拟水力裂缝的扩展特征,因此利用数值模拟方法分析不同水平主应力差下水力裂缝遇到孔洞体后的扩展形态。目前,多采用有限元法模拟水力压裂裂缝的扩展[16-20, 22],通过离散法将一个实体模型转化为一系列相互连接的微小单元。笔者采用扩展有限元法,建立水力压裂流–固耦合分析模型,分析孔洞型碳酸盐岩不同地应力状态及孔洞体分布特征对水力裂缝扩展路径的影响。
利用扩展有限元法模拟水力压裂,无需提前设置裂缝扩展路径,只需在模型上预制初始裂缝,然后在网格节点内部设置注液点。单一孔洞模型尺寸为40 m×40 m,网格尺寸设置为0.30 m×0.30 m;初始裂缝长2.00 m,垂直于模型左侧边界,在模型中心上方0.40 m处;注液点在网格节点之间。模型边界均采用位移约束,且为渗透边界条件。
3.1 水平主应力差对水力裂缝扩展的影响
以顺北油气田某区块碳酸盐岩储层为例,地应力参数设置情况如表2所示,孔洞半径为3 m,储层渗透率为0.11 mD,压裂液黏度为50 mPa·s,排量为5 m3/min,储层压力梯度为1.78 MPa/100m。模拟不同水平主应力下水力裂缝扩展的特征和路径,结果如图10所示。
表 2 数值模拟地应力参数设置Table 2. Parameter setting of in-situ stress in numerical simulation序号 {\sigma _{\text{H}}} /MPa {\sigma _{\text{h}}} / MPa \Dela \sigma / MPa 泊松比 弹性模
量/GPaBiot
系数1 75 70 5 0.19 38.54 0.87 2 65 10 3 60 15 4 55 20 对比不同水平地应力差下水力裂缝的扩展路径可知(图10):水平主应力差越小,水力裂缝扩展路径偏离最大水平主应力方向的距离越大,孔洞体所产生的应力集中对水力裂缝扩展路径的影响越明显;相反,水平主应力差越大,水力裂缝扩展路径越不容易偏离最大水平主应力方向;水平主应力差大于15 MPa(即水平主应力差异系数大于0.25)时,水力裂缝扩展过程中未发生偏转,一直沿最大水平主应力方向扩展,直到与孔洞体沟通。因此,在只有孔洞存在的条件下,水平主应力差越大(即水平主应力差异系数越大),克服孔洞体应力集中的能力越强,裂缝越易于沟通最大水平主应力方向上的孔洞体。
3.2 孔洞体尺寸对水力裂缝扩展的影响
碳酸盐岩储层中孔洞体形态各异,尺寸大小不一,需要研究其对水力裂缝扩展的影响。设定初始裂缝与最大水平主应力方向夹角为0°,最大水平主应力为75 MPa,最小水平主应力为65 MPa,孔洞内压力设置为50 MPa,模拟孔洞半径分别为1,2,3和4 m时的水力裂缝扩展特征和路径,结果如图11和图12所示。
由图11和图12可以看出:孔洞半径为1 m时,水力裂缝扩张路径不发生偏转,直接沿最大水平主应力方向延伸,直至与孔洞沟通;孔洞半径分别为2,3和4 m时,水力裂缝扩展路径均不同程度地偏离最大水平主应力方向;孔洞半径较小时,水力裂缝偏离最大水平主应力方向的距离较小;随孔洞半径增大,水力裂缝偏离最大水平主应力方向的时间提前,同时偏离最大水平主应力的距离增大。
3.3 连续孔洞体对水力裂缝扩展的影响
碳酸盐岩储层中存在多个连续分布的孔洞时,由单个孔洞体对水力裂缝扩展影响的模拟结果可知,孔洞半径和水平主应力差会影响裂缝与孔洞的交互模式;孔洞半径较小或水平主应力差较大时,水力裂缝会被孔洞体捕捉或直接穿过孔洞体。水平主应力差是水力裂缝扩展的主控因素,也是分析连续分布孔洞体对水力裂缝影响时考虑的首要影响因素。
建立孔洞体连续分布模型,地应力取值见表2,孔洞半径设置为1.50 m,模拟连续分布孔洞体下水力裂缝的扩展特征,结果如图13所示。
从图13可以看出:水平主应力差依然是影响水力裂缝扩展的主控因素;水平主应力差越小(
\Delta \sigma =5 MPa),水力裂缝越容易转向绕过孔洞体;连续孔洞体所产生的应力集中区域也同样连续分布,所以水力裂缝在第1个孔洞被排斥发生转向后,会一直沿着应力集中区域的边界向前扩展;随着水平主应力差增大,能够克服第1个孔洞产生的应力集中,水力裂缝与第1个孔洞出现被孔洞捕获(\Delta \sigma =10 MPa)和穿过孔洞(\Delta \sigma =15 MPa)2种交互模式;穿过孔洞的水力裂缝沿最大水平主应力方向继续扩展,进入第2个孔洞产生的应力集中区域,水力裂缝与第2个孔洞的交互作用同样随水平主应力差变化而变化,会出现绕过孔洞(\Delta \sigma =15 MPa)、被孔洞捕获(\Delta \sigma =20 MPa)和穿过孔洞(\Delta \sigma >20 MPa)3种交互模式。由于水力裂缝扩展中穿过孔洞体伴随着能量的耗散,导致在相同水平主应力差下,水力裂缝穿过第1个孔洞后不一定能够穿过第2个孔洞。孔洞连续分布使应力集中区域增大,若要沟通连续孔洞体,需要进一步开展多因素分析。
4. 结 论
1)孔洞体直接影响水力裂缝的扩展形态与扩展路径。水平主应力差异系数不大于0.15时,水力裂缝遇到孔洞体后会发生非平面扩展,且水平主应力差越小,水力裂缝偏离最大水平主应力方向的距离越大,压裂后水力裂缝的形态越复杂。
2)水平主应力差异系数大于0.15、小于0.36时,水平主应力差会克服孔洞体应力集中的影响形成平面扩展的水力裂缝,但遇到孔洞体后会被孔洞体所捕捉,无法穿过孔洞体继续扩展。
3)水平主应力差异系数不小于0.36时,水平主应力差会克服孔洞体应力集中,使水力裂缝沿平面进行扩展,且遇到孔洞后会直接穿过孔洞体后继续沿原路径扩展;随着水平主应力差增大,水力裂缝所对应的破裂压力逐渐降低。
4)受地应力条件、孔洞体特征等的影响,碳酸盐岩储层中水力裂缝扩展复杂,下一步可参照文中思路,探索碳酸盐岩储层中水力裂缝在不同地应力特征、不规则孔洞和不同压裂施工参数等条件下的扩展规律,为压裂设计提供依据。
-
表 1 不同规格Q345E钢板–50 ℃下的冲击试验结果
Table 1 Impact test results of Q345E steel plates with different specifications at –50 °C
序号 材料 冲击功/J 结果 1 Q345E/-16 277 279 287 合格 2 Q345E/-20 88 74 82 合格 3 Q345E/-36 248 231 209 合格 4 Q345E/-40 346 21 57 合格 5 Q345E/-45 40 25 38 合格 6 Q345E/200X160X16 95 86 80 合格 7 Q345E/160X120X12 171 134 158 合格 GB/T 1591—2008和API 4F
标准的参考值平均值27 J,单个值20 J 表 2 40CrNiMo合金钢采用不同热处理工艺后的低温冲击试验结果
Table 2 Low-temperature impact test results of 40CrNiMo alloy steel treated with different heat treatment processes
序号 材料 抗拉强
度/MPa屈服强
度/MPa延伸率,
%冲击功/
J热处理工艺 1 40CrNiMo 1052 886 13 26 A ℃淬火+
560 ℃回火2 40CrNiMo 1010 868 14 35 B ℃淬火+
585 ℃回火3 40CrNiMo 980 850 13 40 A ℃淬火+
600 ℃回火4 40CrNiMo 945 760 13 51 B ℃淬火+
620 ℃回火5 40CrNiMo 968 770 13 56 C ℃淬火+
635 ℃回火API 8C标准的
参考值≥820 ≥758 ≥12 ≥27 — 表 3 两种低温钻井液体系的常规性能
Table 3 Conventional performance of two low-temperature drilling fluid systems
钻井液 试验温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa ϕ6读数 API滤失量/mL 润滑系数 pH值 配方1 30 26.0 16.0 10.0 6 7.2 0.160 9 10 31.5 21.0 10.5 6 6.4 0 41.5 24.0 17.5 7 5.6 –10 50.5 31.0 19.5 7 4.4 –25 70.0 44.0 26.0 9 3.0 配方2 30 32.5 21.0 11.5 8 7.2 0.094 9 4 44.5 28.5 16.0 9 4.4 0 47.5 31.0 16.5 10 3.0 注:配方1为–25~0 ℃低温钻井液体系;配方2为0~4 ℃低温钻井液体系;上述2种钻井液体系的密度均为1.15 kg/L。 -
[1] 中华人民共和国国务院新闻办公室. 中国的北极政策[EB/OL].(2018-01-26)[2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm. The state council information office of the People’s Republic of China.China’s Arctic policy[EB/OL]. (2018-01-26) [2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.
[2] HAMILTON J M. The challenges of deep-water Arctic development[J]. International Journal of Offshore and Polar Engineering, 2011, 21(4): 241–247.
[3] 余本善, 孙乃达.全球待发现油气资源分布及启示[J].中国矿业, 2015, 24(增刊1): 22-27. YU Benshan, SUN Naida. The distribution of global undiscovered hydrocarbon resources and enlightenment[J]. China Mining Magazine, 2015, 24(supplement 1): 22-27.
[4] 李浩武,童晓光. 北极地区油气资源及勘探潜力分析[J]. 中国石油勘探,2010,15(3):73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015 LI Haowu, TONG Xiaoguang. Exploration potential analysis of oil and gas resources in Arctic regions[J]. China Petroleum Exploration, 2010, 15(3): 73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015
[5] 崔白露,王义桅. “一带一路”框架下的北极国际合作:逻辑与模式[J]. 同济大学学报(社会科学版),2018,29(2):48–58. CUI Bailu, WANG Yiwei. International cooperation on the Arctic under the Belt and Road Initiative: logics and models[J]. Journal of Tongji University (Social Science Section), 2018, 29(2): 48–58.
[6] WHITEMAN G, HOPE C, WADHAMS P. Climate science: vast costs of Arctic change[J]. Nature, 2013, 499(7459): 401–403. doi: 10.1038/499401a
[7] 路保平, 李国华.俄罗斯萨哈林海洋钻井总承包工程[M].东营: 中国石油大学出版社, 2009. LU Baoping, LI Guohua. Russia Sakhalin offshore drilling EPC project[M]. Dongying: China University of Petroleum Press, 2009.
[8] 卢景美,邵滋军,房殿勇,等. 北极圈油气资源潜力分析[J]. 资源与产业,2010,12(4):29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007 LU Jingmei, SHAO Zijun, FANG Dianyong, et al. Analysis of oil-gas resources potential in the Arctic circle[J]. Resources & Industries, 2010, 12(4): 29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007
[9] 郭晓琼. 中俄经贸合作新进展及未来发展趋势[J]. 俄罗斯学刊,2016(3):10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002 GUO Xiaoqiong. New progress in economic and trade cooperation between China and Russia and the future development trend[J]. Academic Journal of Russian Studies, 2016(3): 10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002
[10] WINKLER M M. Frontier Arctic offshore exploration drilling business challenge[R]. OTC 29144, 2018.
[11] Eurasia Group. Opportunities and challenges for Arctic oil and gas development[R]. OTC 24586, 2014.
[12] SOUTHAM A L. the impact of non-technical risks on oil and gas activities in Alaska’s Arctic[R]. SPE 166811, 2013.
[13] FEBBO E, PAYNE K, REEP B. Technology and innovation for environmental monitoring on Alaska’s North Slope[R]. SPE 184471, 2017.
[14] SMITS C C, HUBER E. A social license to operate in the Arctic: exploring the challenges and opportunities for offshore oil and gas a ctivities in Greenland[R]. SPE 179343, 2016.
[15] CHOU Q, MURTAZA M, MAMMADOV E, et al. Arctic drilling hazard identification relating to salt tectonics[R]. OTC 27396, 2016.
[16] 党学博,李怀印. 北极海洋工程模式及关键技术装备进展[J]. 石油工程建设,2016,42(4):1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001 DANG Xuebo, LI Huaiyin. Offshore engineering modes and key technologies in Arctic[J]. Petroleum Engineering Construction, 2016, 42(4): 1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001
[17] 孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002 SUN Baojiang. Progress and prospect of key equipment for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002
[18] LI Huaiyin, DANG Xuebo, ZHU Kai. Review and outlook on Arctic offshore facilities & technologies[R]. OTC 25541, 2015.
[19] 杨进,路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术,2017,45(5):1–7. YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
[20] FENG Wen, JAMES B, CHEUNG T O, et al. Study on the material properties of aged steel exposed to the Arctic environment[R]. OTC 29161, 2018.
[21] NEAL P, FELIPE M, JOHN E, et al. Shallow water subsea drilling and production structure to resist sand and ice keel intrusion in Arctic environments[R]. OTC 27440, 2016.
[22] JI Guodong, WANG Haige, WANG Lingbi, et al. Current situation and development trend of Arctic drilling equipment[R]. ISOPE-I-13-184, 2013.
[23] UTVIK T I, JAHRE-NILSEN C. The importance of early identification of safety and sustainability related risks in Arctic oil and gas operations[R]. SPE 179325, 2016.
[24] TORSÆTER M, CERASI P. Mud-weight control during Arctic drilling operations[R]. OTC 25481, 2015.
[25] XIE Jueren, MATTHEWS C M. Methodology to assess thaw subsidence impacts on the design and integrity of oil and gas wells in Arctic regions[R]. SPE 149740, 2011.
[26] ANDREY B, GURBAN V, STANISLAV K, et al. Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of Western Siberia (Russian Federation)[R]. OTC 24617, 2014.
[27] 周波,杨进,张百灵,等. 海洋深水浅层地质灾害预测与控制技术[J]. 海洋地质前沿,2012,28(1):51–54. ZHOU Bo, YANG Jin, ZHANG Bailing, et al. Prediction and control technology of shallow geological hazards in deepwater area[J]. Marine Geology Frontiers, 2012, 28(1): 51–54.
[28] 李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095 LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095
[29] 李鸿涛,陶平安,王志忠,等. ZJ40/2250DBG低温轨道钻井装备的研制[J]. 石油机械,2014,42(11):64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016 LI Hongtao, TAO Pingan, WANG Zhizhong, et al. Development of ZJ40 /2250DBG low-temperature track drilling rig[J]. China Petroleum Machinery, 2014, 42(11): 64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016
[30] KAMATOV K. Hybrid drill bit for horizontal drilling in highly interbedded formations of timano-pechora Arctic fields[R]. SPE 166841, 2013.
[31] 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8. doi: 10.11911/syztjs.2019069 GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8. doi: 10.11911/syztjs.2019069
[32] 黄文君,石小磊,高德利. 基于钻井延伸极限的管柱分段优化设计方法[J]. 石油机械,2020,48(4):1–8. HUANG Wenjun, SHI Xiaolei, GAO Deli. Piecewise optimal design method of tubular strings based on extended-reach drilling limits[J]. China Petroleum Machinery, 2020, 48(4): 1–8.
[33] CHEN Wei, SHEN Yuelin, CHEN Rongbing, et al. Simulating drillstring dynamics motion and post-buckling state with advanced transient dynamics model[J]. SPE Drilling & Completion, 2021: 1–15. doi: https://doi.org/10.2118/199557-PA
[34] BUI B T, TUTUNCU A N. A generalized rheological model for drilling fluids with cubic splines[J]. SPE Drilling & Completion, 2015, 31(1): 26–39.
[35] MAHMOUD O, NASR-EL-DIN H A, VRYZAS Z, et al. Effect of ferric oxide nanoparticles on the properties of filter cake formed by calcium bentonite-based drilling muds[J]. SPE Drilling & Completion, 2018, 33(4): 363–376.
[36] 刘华南.冻土层钻探低温泡沫冲洗液的研究[D].长春: 吉林大学, 2016. LIU Huanan. Research on low temperature foam flushing fluid used in frozen soil layer drilling[D]. Changchun: Jilin University, 2016.
[37] WINKLER M M, JAHRE-NILSEN C. Arctic response technology JIP key achievements and final deliverables[R]. OTC 29120, 2018.
[38] RAKHMANGULOV R, EVDOKIMOVA I, DOBROKHLEB P, et al. Entering the Arctic gate: high end drilling at the high latitude[R]. SPE 181922, 2016.
[39] HASLING J F. Predicting the timing and duration of Arctic sea ice and its implications on future drilling seasons in the Chukchi Sea and Beaufort Sea[R]. OTC 27443, 2016.
[40] EFIMOV Y O, KORNISHIN K A, SOCHNEV O Y, et al. Evaluation of exploration drilling scenarios in the southwestern part of the Kara Sea[R]. ISOPE-I-20-1272, 2020.
[41] GUZENKO R B, MIRONOV Y U, KHARITONOV V V, et al. Complex study of large ice features and assessment of morphometric, physical-strength and age characteristics of a composite ice ridge[R]. ISOPE-I-20-1260, 2020.
[42] ISRAEL R, McCRAE D, SPERRY N, et al. Delivering drilling automation II: novel automation platform and wired drill pipe deployed on Arctic drilling operations[R]. SPE 191574, 2018.
[43] LAI S W, NG J, EDDY A, et al. Large-scale deployment of a closed-loop drilling optimization system: implementation and field results[J]. SPE Drilling and Completion, 2021, 36(1): 47–62. doi: 10.2118/199601-PA
[44] WILSON A. Automated operations and wired drillpipe benefit Arctic drilling[J]. Journal of Petroleum Technology, 2019, 71(2): 62–64. doi: 10.2118/0219-0062-JPT
[45] GOVINDU A, AHMED R, SHAH S, et al. The effect of inclination on the stability of foam systems in drilling and well operations[J]. SPE Drilling & Completion, 2020: 1–18. doi: https://doi.org/10.2118/199821-PA
[46] KINIK K, GUMUS F, OSAYANDE N. Automated dynamic well control with managed-pressure drilling: a case study and simulation analysis[J]. SPE Drilling & Completion, 2015, 30(2): 110–118.
[47] STAVE R, FOSSLI B, ENDRESEN C, et al. Exploration drilling with riserless dual gradient technology in Arctic waters[R]. OTC 24588, 2014.
-
期刊类型引用(8)
1. 罗攀登,张士诚,郭天魁,王赫,陈铭,张雄. 缝洞型碳酸盐岩水平井压裂裂缝沟通效果模拟. 深圳大学学报(理工版). 2025(01): 30-40 . 百度学术
2. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
3. 陈凯,段永伟,于雪盟,刘洪霞,王翠翠,朱旭. 松南盆地情字外前缘砂页交互储层可压性评价. 油气井测试. 2024(04): 66-72 . 百度学术
4. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 . 百度学术
5. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 . 百度学术
6. 钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO_2增能压裂裂缝形态研究. 石油钻探技术. 2023(05): 42-48 . 本站查看
7. 冯新根,方俊伟,方裕燕,潘丽娟. 抗高温隔离膜缓速酸液体系研制与性能评价. 石油钻探技术. 2023(06): 99-105 . 本站查看
8. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 . 百度学术
其他类型引用(1)