Key Drilling Techniques for Horizontal Wells with Ultra-Long Horizontal Sectionin the Shale Oil Reservoir in Jimusar, Xinjiang
-
摘要: 为解决新疆吉木萨尔页岩油超长水平段水平井水平段钻井中井眼失稳和摩阻过大的问题,满足3 000~3 500 m长水平段安全快速钻井需求,进行了井身结构优化、双二维井眼轨道设计、根据井眼清洁情况确定钻井参数等降摩减阻技术研究,并在室内优化配制了抑制性强、稳定性好、润滑性强的油基钻井液,研究形成了新疆吉木萨尔页岩油超长水平段水平井钻井关键技术。该技术在现场试验3口井,水平段机械钻速达到10.9 m/h,缩短了钻井周期,3口水平井的通井、电测和下套管作业均一次完成,钻井完井过程中未发生井下故障,并创造了国内非常规油气藏最长水平段纪录。研究与应用结果表明,该技术可以满足新疆页吉木萨尔页岩油示范区超长水平段水平井安全高效钻井和进一步提高水平段延伸能力的技术需求,值得推广应用。Abstract: Borehole instability and excessive friction were encountered during drilling the ultra-long horizontal section of horizontal wells in the shale oil reservoir in Jimusaer, Xinjiang. For safe and fast drilling of horizontal sections of 3 000–3 500 m, a friction reduction study was performed, such as optimization of the casing program, design of a dual two-dimensional trajectory, and determination of drilling parameters based on wellbore cleaning condition, etc. Moreover, an oil base drilling fluid formula with excellent performance in inhibition, stability and lubricity was identified in the laboratory. Finally, the key drilling techniques were developed for the horizontal wells with ultra-long horizontal section in the shale oil reservoir in Jimusaer, Xinjiang. The techniques were applied in three wells with a penetration rate of 10.9 m/h in the horizontal section and greatly reduced drilling time. The drifting process, electric logging and casing running in those wells were all successful in one run, without any occurrence of downhole complex situations during drilling and completion. It set the longest horizontal section record of unconventional oil and gas reservoirs in China. Research and application results show that the techniques can meet the technical requirements for safe and efficient drilling of the horizontal wells with ultra-long horizontal section in shale oil demonstration area in Jimusaer, Xinjiang and further improve the extension capacity of the horizontal section, and it is worthy of popularization and application.
-
-
表 1 不同摩阻系数条件下的水平段延伸能力统计结果
Table 1 Statistics of horizontal section extension capacity under different friction coefficient conditions
井号 通井摩阻/
kN实钻水平
段长/m摩阻
系数水平段最大
延伸能力/mJ10057H 38~42 2 256 0.37 2 200 J10028H 40~45 2 030 0.41 2 040 J179H 40~45 1 830 0.40 2 050 J10016H 50~60 1 600 0.55 1 540 表 2 芦草沟组岩石成分分析结果
Table 2 Analysis results of rock composition of Lucaogou Formation
序号 理化分析结果,% 黏土 石英 斜长石 方解石 沸石 铁辉石 1 17 23 53 3 4 2 20 48 32 3 20 47 33 4 10 2 79 9 表 3 2019年新疆页岩油井区三开水平井水平段卡钻情况统计结果
Table 3 Statistics of stuck in the third horizontal section of the horizontal wells in the shale oil well area in Xinjiang in 2019
井号 卡钻发生
井深/m进入水平段
时间/d工况 钻井液密度/
(kg·L–1)卡钻情况简述 J10017H 4 885 21 钻进 1.60 钻至井深4 885 m时,立柱下单根钻完,上提下单根出转盘面5 m,顶驱扭矩由19 kN·m升至24 kN·m蹩停、卡钻,振动筛返出大量岩屑 J179H 5 260 26 划眼 1.60 通井遇阻划眼至井深5 260 m,顶驱突然蹩停,泵压由15 MPa升至19 MPa,原悬重1 300 kN,摩阻400~600 kN,上提下放(悬重700~1 900 kN)无效,钻具卡死,振动筛上可见大量岩屑 JHW051 4 138 17 钻进 1.59 钻至井深4 138 m时,钻具上提0.8 m,转盘扭矩由14 kN·m升至23 kN·m,顶驱蹩停,上提下放(悬重800~1 200 kN,原悬重1 030 kN)无效,发生卡钻 J10016H 3 988 19 钻进 1.59 钻至井深3 988 m时,钻具上提2 m,顶驱蹩停,泵压由19 MPa升至23 MPa,上提遇阻,卡钻,井口返出大量岩屑 J10019H 4 483 22 钻进 1.61 钻至井深4 483 m时,上提钻具1.5 m,钻井泵安全销打掉,倒泵后开泵循环,上提钻具遇阻,来回活动钻具无反应,发生卡钻 表 4 白油基油包水钻井液的基本性能
Table 4 Basic properties of white oil-based water-in-oil drilling fluid
试验
条件表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
Pa破乳电
压/V高温高压滤
失量2)/mL老化前 64 54 10 890 2.0 老化后1) 62 53 9 780 2.4 注:1)老化条件为在150 ℃温度下热滚16 h(井底温度100~120 ℃);2)温度150 ℃,压差3.5 MPa。 表 5 试验井与采用水基钻井液邻井的摩阻系数对比
Table 5 Comparison between friction coefficients of the test well and its adjacent well using water-based drilling fluid
井号 钻井液 水平段长度/m 实测摩阻系数 JHW00421 油基钻井液 3 100 0.18 JHW00422 油基钻井液 3 500 0.15 JHW00423 油基钻井液 3 000 0.16 JHW041 水基钻井液 1 500 0.40 JHW01022 水基钻井液 1 500 0.39 JHW051 水基钻井液 2 000 0.41 JHW151 水基钻井液 2 000 0.37 -
[1] 南旭. 关于页岩气井井壁失稳机理及其油基钻井液技术探究[J]. 化工管理,2020(17):96–97. NAN Xu. Study on wellbore instability mechanism of shale gas well and oil based drilling fluid technology[J]. Chemical Enteaprise Management, 2020(17): 96–97.
[2] 程远方,张锋,王京印,等. 泥页岩井壁坍塌周期分析[J]. 中国石油大学学报(自然科学版),2007,31(1):63–66, 71. CHENG Yuanfang, ZHANG Feng, WANG Jingyin, et al. Analysis of borehole collapse cycling time for shale[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(1): 63–66, 71.
[3] 李辉. 白油基油包水钻井液在JHW00421井水平段的应用[J]. 新疆石油天然气,2020,16(2):38–42. doi: 10.3969/j.issn.1673-2677.2020.02.009 LI Hui. The application of invert white oil based drilling fluid in horizontal section of Well JHW00421[J]. Xinjiang Oil & Gas, 2020, 16(2): 38–42. doi: 10.3969/j.issn.1673-2677.2020.02.009
[4] 袁华玉,程远方,王伟,等. 长水平段钻井泥岩井壁坍塌周期分析[J]. 科学技术与工程,2017,17(3):183–189. doi: 10.3969/j.issn.1671-1815.2017.03.028 YUAN Huayu, CHENG Yuanfang, WANG Wei, et al. Analysis on time-dependent wellbore collapse for long horizontal well in shale formation[J]. Science Technology and Engineering, 2017, 17(3): 183–189. doi: 10.3969/j.issn.1671-1815.2017.03.028
[5] 杨睿,张拓铭. 吉木萨尔凹陷芦草沟组页岩油水平井钻井技术[J]. 新疆石油天然气,2019,15(3):36–40. doi: 10.3969/j.issn.1673-2677.2019.03.007 YANG Rui, ZHANG Tuoming. Horizontal well drilling technology of shale oil in Jimusar Concave Lucaogou Formation[J]. Xinjiang Oil & Gas, 2019, 15(3): 36–40. doi: 10.3969/j.issn.1673-2677.2019.03.007
[6] 石建刚,席传明,熊超,等. 吉木萨尔页岩油藏超长水平井水平段长度界限研究[J]. 特种油气藏,2020,27(4):136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021 SHI Jiangang, XI Chuanming, XIONG Chao, et al. Lateral length limit of ultra-long horizontal well in Jimsar Shale Oil Reservoir[J]. Special Oil & Gas Reservoir, 2020, 27(4): 136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021
[7] 王显光,李雄,林永学. 页岩水平井用高性能油基钻井液研究与应用[J]. 石油钻探技术,2013,41(2):18–21. WANG Xianguang, LI Xiong, LIN Yongxue. Research and application of high performance oil base drilling fluid for shale horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 18–21.
[8] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[9] 孙永兴,贾利春. 国内3 000 m长水平段水平井钻井实例与认识[J]. 石油钻采工艺,2020,42(4):393–401. SUN Yongxing, JIA Lichun. Cases and understandings on the drilling of horizontal well with horizontal section of 3 000 m long in China[J]. Oil Drilling & Production Technology, 2020, 42(4): 393–401.
[10] 樊好福,臧艳彬,张金成,等. 深层页岩气钻井技术难点与对策[J]. 钻采工艺,2019,42(3):20–23. doi: 10.3969/J.ISSN.1006-768X.2019.03.06 FAN Haofu, ZANG Yanbin, ZHANG Jincheng, et al. Technical difficulties and countermeasures of deep shale gas drilling[J]. Drilling & Production Technology, 2019, 42(3): 20–23. doi: 10.3969/J.ISSN.1006-768X.2019.03.06
[11] 代瑜,范忠波,谢荣华,等. 四川长宁页岩气超长水平井钻井技术的应用[J]. 化工设计通讯,2019,45(7):267–268. doi: 10.3969/j.issn.1003-6490.2019.07.174 DAI Yu, FAN Zhongbo, XIE Ronghua, et al. Application of drilling technology in Changning shale gas super long horizontal well in Sichuan[J]. Chemical Engineering Design Communications, 2019, 45(7): 267–268. doi: 10.3969/j.issn.1003-6490.2019.07.174
[12] 王建龙,冯冠熊,刘学松,等. 长宁页岩气超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2020,48(5):9–14. doi: 10.11911/syztjs.2020086 WANG Jianlong, FENG Guanxiong, LIU Xuesong, et al. Key technology for drilling and completion of shale gas horizontal wells with ultra-long horizontal sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9–14. doi: 10.11911/syztjs.2020086
[13] 刘茂森,付建红,白璟. 页岩气双二维水平井轨迹优化设计与应用[J]. 特种油气藏,2016,23(2):147–150. doi: 10.3969/j.issn.1006-6535.2016.02.036 LIU Maosen, FU Jianhong, BAI Jing. Optimization of shale gas dual- 2D horizontal-well trajectories and its application[J]. Special Oil & Gas Reservoir, 2016, 23(2): 147–150. doi: 10.3969/j.issn.1006-6535.2016.02.036
-
期刊类型引用(23)
1. 安然,刘旭华,李凯凯,钱雄涛,董传宾. 三叠系油藏堵驱结合技术的探索应用. 石油化工应用. 2024(01): 50-53 . 百度学术
2. 杨耀春,黄纯金,何吉波,李媛,杨筱珊,赵晓伟. 改性石墨高强调驱剂的制备及其矿场应用. 精细石油化工. 2024(03): 49-53 . 百度学术
3. 张雪萍,刘亮,高彪,张仙伟. 低渗透油田高压注水井在线酸化增注技术. 西安石油大学学报(自然科学版). 2024(06): 88-94 . 百度学术
4. 洪伟,程东东,杨溢,陈林,陈立峰,付美龙. 高温高盐油藏污水配聚黏度影响主控因素及调剖调驱体系研究. 长江大学学报(自然科学版). 2024(06): 97-106 . 百度学术
5. 杨雪瑞,陈铀财,高辉,刘喆. 低渗油藏调驱调剖剂应用现状研究进展. 石油化工应用. 2023(04): 12-16 . 百度学术
6. 葛罗. 大庆油田萨北区块中渗透砂岩油藏凝胶调剖剂运移吸附试验研究. 石油钻探技术. 2023(03): 119-125 . 本站查看
7. 王威,卢祥国,刘长龙,陈征,李彦阅,吕金龙,曹伟佳,徐元德. 转向剂/乳化剂复合体系的深部调剖性能. 油田化学. 2023(03): 419-425 . 百度学术
8. 马江波,李二冬,陈塞锋,李刚,李欣欣. 低渗透油田深度调剖技术化学研究与应用评价. 当代化工. 2023(12): 2955-2958 . 百度学术
9. 龙远,刘洋,向澳洲,刘玉龙,孔维达. 聚合物微球提高油田采收率的研究与应用. 精细石油化工进展. 2022(01): 8-13 . 百度学术
10. 达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 . 本站查看
11. 安然,李凯凯,陈世栋,朱向前,钱雄涛. 纳米微球深部调驱技术在低渗透油藏的应用. 石油化工应用. 2022(06): 57-60+89 . 百度学术
12. 何吉波,王策,严阿永,乔江宏,李跃,薛伟. 华庆油田纳米聚合物微球调驱性能评价及应用. 石油化工应用. 2022(12): 26-31 . 百度学术
13. 于萌,徐国瑞,李翔,张东,盛磊,刘文辉. 海上油田低温酚醛凝胶的改进及应用. 化工科技. 2022(06): 68-72 . 百度学术
14. 李彦阅,刘义刚,卢祥国,刘进祥,张楠. 井网类型对“堵/调/驱”综合治理效果的影响——以渤海LD5-2油田为例. 大庆石油地质与开发. 2021(06): 115-123 . 百度学术
15. 尤翔程,李世远. 纳米颗粒球形度对倾斜通道中纳米流体反向混合对流传热的影响. 石油科学通报. 2021(04): 604-613 . 百度学术
16. 于萌,铁磊磊,李翔,刘文辉. 海上油田剖面调整用分散共聚物颗粒体系的研制. 石油钻探技术. 2020(02): 118-122 . 本站查看
17. 邵明鲁,岳湘安,岳添漆,贺杰. 耐温抗剪切微球调剖剂的制备及评价. 断块油气田. 2020(03): 399-403 . 百度学术
18. 刘家林,刘涛. 深部调驱体系适应性及现场应用. 精细石油化工进展. 2020(02): 6-11 . 百度学术
19. 周雪,李辉,李媛. 裂缝性油藏多级段塞调控工艺参数优化研究. 化学工程与装备. 2019(01): 42-44 . 百度学术
20. 刘鹏虎,聂安琪,熊永安. 聚合物纳米微球调驱技术在低渗透油田的应用及效果. 石化技术. 2019(08): 77-78 . 百度学术
21. 朱家杰,施盟泉,曹荣荣,周广卿,马波,刘宇鹏. WQ100型聚合物微球理化性质及注入参数优化. 西安石油大学学报(自然科学版). 2019(05): 73-78 . 百度学术
22. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 . 百度学术
23. 于波,郭兰磊,刘璟垚,赵二猛,刘永革. 复配聚合物对驱油效果影响的核磁共振实验研究. 油气地质与采收率. 2018(05): 116-121 . 百度学术
其他类型引用(12)