基于水平井电阻率测井的井间夹层反演方法及应用

胡松, 王敏, 田飞, 赵磊

胡松, 王敏, 田飞, 赵磊. 基于水平井电阻率测井的井间夹层反演方法及应用[J]. 石油钻探技术, 2021, 49(3): 151-158. DOI: 10.11911/syztjs.2021031
引用本文: 胡松, 王敏, 田飞, 赵磊. 基于水平井电阻率测井的井间夹层反演方法及应用[J]. 石油钻探技术, 2021, 49(3): 151-158. DOI: 10.11911/syztjs.2021031
HU Song, WANG Min, TIAN Fei, ZHAO Lei. Interlayer Inversion Method and Its Application Based on Horizontal Well Resistivity Logging[J]. Petroleum Drilling Techniques, 2021, 49(3): 151-158. DOI: 10.11911/syztjs.2021031
Citation: HU Song, WANG Min, TIAN Fei, ZHAO Lei. Interlayer Inversion Method and Its Application Based on Horizontal Well Resistivity Logging[J]. Petroleum Drilling Techniques, 2021, 49(3): 151-158. DOI: 10.11911/syztjs.2021031

基于水平井电阻率测井的井间夹层反演方法及应用

基金项目: 国家科技重大专项专题“致密复杂碎屑岩储层测井评价技术”(编号:2016ZX05002-005-001)、中国石化科技攻关项目“水平井环境声波及电阻率校正方法与应用研究”(编号:PE19012-1)联合资助
详细信息
    作者简介:

    胡松(1985—),男,湖北赤壁人,2008年毕业于长江大学勘查技术与工程专业,2014年获中国石油勘探开发研究院地球探测与信息技术专业博士学位,副研究员,主要从事测井新技术研究及地质评价工作。E-mail:husong.syky@sinopec.com。

  • 中图分类号: P631.8, TE122.2

Interlayer Inversion Method and Its Application Based on Horizontal Well Resistivity Logging

  • 摘要: 为了掌握夹层的空间分布特征,揭示剩余油分布规律,开展了井间夹层识别与预测研究。首先,根据岩心资料确定了夹层类型,并结合测井资料建立了夹层识别标准;然后,依据电测井原理构建反演算法,反演得到了水平井井轴外夹层的展布情况。研究发现,利用密度相对值与自然伽马相对值交会或补偿中子相对值与自然伽马相对值交会,能够识别研究区2类夹层;反演的钙质夹层厚度绝对误差为0.018 m,泥质夹层厚度绝对误差为0.017 m;钙质夹层较为发育,分布广,厚度变化大;泥质夹层分布数量相对较少,以顺物源北东向分布。研究结果表明,利用水平井电阻率反演井轴外夹层的分布,结合直井联合控制确定的夹层井间展布,可以提高夹层井间预测精度,为研究剩余油分布和挖潜提供依据。
    Abstract: In order to study the spatial distribution characteristics of interlayers and reveal the distribution pattern of remaining oil, interlayers between wells were predicted and identified. Firstly, the types of interlayers were determined from core analysis, and the identification criteria was established along with logging data.Then, an inversion algorithm was designed on the basis of electric logging for the distribution of interlayers beyond horizontal wellbore. The results demonstrate that the intersection of relative density or relative value of neutron with relative value of gamma can identify two types of interlayers in the target area with absolute errors of 0.018 m and 0.017 m in the inversed thickness of calcareous interlayers and muddy interlayers, respectively. The calcareous interlayers are more developed, with wide distribution and varied change in thickness, while the muddy interlayers are fewer, with a distribution in the northeast orientation. This study, which can provide a reference in studying the distribution and tapping potential of remaining oil, proves that the prediction of interlayer distribution between wells can be more accurate after the interlayer distribution beyond the wellbore is inversed on the basis of horizontal-well resistivity and the inter-well distribution of interlayers determined with the joint control of vertical wells.
  • 图  1   夹层测井响应特征

    Figure  1.   Logging response of interlayers

    图  2   研究区直井夹层识别交会图

    Figure  2.   Interlayer identification intersection of vertical wells in the target area

    图  3   夹层厚度反演模型示意

    Figure  3.   Inversion model of interlayer thickness

    图  4   导眼井目的层段电阻率反演

    Figure  4.   Resistivity inversion of target layers in a pilot well

    图  5   水平井井眼轨迹外夹层识别成果

    Figure  5.   Identification result of interlayers beyond the horizontal wellbore

    图  6   TK9-JI井与其周围邻井夹层对比剖面

    Figure  6.   Comparison between interlayers of Well TK9-JI and its adjacent wells

    图  7   T2a1各小层夹层平面分布特征

    Figure  7.   Interlayer distribution characteristics of the sublayers of T2a1

    表  1   直井段夹层测井识别标准

    Table  1   Logging criteria for identifying the interlayers in vertical wells

    夹层类型自然伽马/API自然电位/mV声波时差/(μs·m–1)补偿密度/(g·cm–3补偿中子,%自然伽马相对值密度相对值
    泥质夹层>64负异常很小增大减小增大≥6≤0.02
    钙质夹层减小无变化减小增大减小<6>0.02
    下载: 导出CSV

    表  2   隔夹层反演模型及反演结果

    Table  2   Inversion model and result of interlayers

    夹层类型夹层厚度/
    m
    深感应电阻率/
    (Ω·m)
    中感应电阻率/
    (Ω·m)
    反演夹层
    厚度/m
    钙质夹层0.203.583.290.20
    0.303.112.760.29
    0.502.472.050.51
    1.001.611.261.04
    2.001.241.051.97
    泥质夹层0.202.612.290.20
    0.302.101.760.29
    0.501.511.180.49
    1.000.870.651.03
    2.000.640.532.04
    下载: 导出CSV
  • [1] 孙恩慧,郭敬民,谭捷,等. 含隔夹层底水油藏的注水开发影响因素分析[J]. 重庆科技学院学报(自然科学版),2020,22(4):30–34.

    SUN Enhui, GUO Jingmin, TAN Jie, et al. Analysis of factors influencing water-flooding development of bottom water reservoir with interlayer[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2020, 22(4): 30–34.

    [2] 谷建伟,任燕龙,王依科,等. 基于机器学习的平面剩余油分布预测方法[J]. 中国石油大学学报(自然科学版),2020,44(4):39–46.

    GU Jianwei, REN Yanlong, WANG Yike, et al. Prediction methods of remaining oil plane distribution based on machine learning[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 39–46.

    [3] 杨敏,李小波,谭涛,等. 古暗河油藏剩余油分布规律及挖潜对策研究:以塔河油田TK440井区为例[J]. 油气藏评价与开发,2020,10(2):43–48.

    YANG Min, LI Xiaobo, TAN Tao, et al. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: a case study of TK440 well area in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 43–48.

    [4] 张吉磊,龙明,何逸凡,等. 渤海Q油田隔夹层发育底水稠油油藏精细注采技术[J]. 石油钻探技术,2018,46(2):75–80.

    ZHANG Jilei, LONG Ming, HE Yifan, et al. Fine injection-production technology for bottom-water viscous oil reservoirs with interlayers in Bohai Q Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(2): 75–80.

    [5] 郭春涛,倪玲梅,陈继福. 塔中地区含砾砂岩段隔夹层特征及分布规律[J]. 科学技术与工程,2020,20(7):2625–2633. doi: 10.3969/j.issn.1671-1815.2020.07.015

    GUO Chuntao, NI Lingmei, CHEN Jifu. Characteristics and distribution of interlayer in gravel-bearing sandstone segment in Tazhong Area[J]. Science Technology and Engineering, 2020, 20(7): 2625–2633. doi: 10.3969/j.issn.1671-1815.2020.07.015

    [6] 巩强,李胜利,刘圣,等. 远源水下扇内部夹层识别与展布规律研究[J]. 特种油气藏,2020,27(1):55–61.

    GONG Qiang, LI Shengli, LIU Sheng, et al. Identification and distribution of internal interlayers in distal uUnderwater fan[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 55–61.

    [7] 王超,杨宏楠,乐平,等. 隔夹层成因及其对剩余油分布的影响:以哈得油田东河砂岩油藏为例[J]. 新疆石油天然气,2019,15(4):15–20. doi: 10.3969/j.issn.1673-2677.2019.04.004

    WANG Chao, YANG Hongnan, LE Ping, et al. Rigin of interbeds and the influence on distribution of remaining oil: taking command of the Hudson Donghe sandstone oilfield[J]. Xinjiang Oil & Gas, 2019, 15(4): 15–20. doi: 10.3969/j.issn.1673-2677.2019.04.004

    [8] 朱建敏,达丽亚,高红立,等. 海上稀井条件下砂质辫状河储层隔夹层识别:以渤海LD2X油田为例[J]. 断块油气田,2020,27(6):739–744.

    ZHU Jianmin, DA Liya, GAO Hongli, et al. Identification of interlayers in sandy braided river reservoirs under less well conditions: a case study of LD2X Oilfield, Bohai, China[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 739–744.

    [9] 李红英,陈善斌,杨志成,等. 巨厚油层隔夹层特征及其对剩余油分布的影响:以渤海湾盆地L油田为例[J]. 断块油气田,2018,25(6):709–714.

    LI Hongying, CHEN Shanbin, YANG Zhicheng, et al. Characteristics of interbeds in thick oil layer and its effect on remaining oil distribution: a case study of L Oilfield, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 709–714.

    [10] 徐丽强,李胜利,于兴河,等. 辫状河三角洲前缘储层隔夹层表征及剩余油预测:以彩南油田彩9井区三工河组为例[J]. 东北石油大学学报,2016,40(4):10–18. doi: 10.3969/j.issn.2095-4107.2016.04.002

    XU Liqiang, LI Shengli, YU Xinghe, et al. Characterization of barrier-intercalation and remaining oil prediction in the braided river delta front reservoirs: an example from the Sangonhe Formation in Block Cai 9 of Cainan Oilfield[J]. Journal of Northeast Petroleum University, 2016, 40(4): 10–18. doi: 10.3969/j.issn.2095-4107.2016.04.002

    [11] 夏竹,张婷婷,张胜,等. 水平井参与下的油藏隔夹层描述技术及应用[J]. 石油与天然气地质,2018,39(6):1293–1304. doi: 10.11743/ogg20180618

    XIA Zhu, ZHANG Tingting, ZHANG Sheng, et al. Technique for describing baffles and barriers in oil reservoir with horizontal well data integrated and its application[J]. Oil & Gas Geology, 2018, 39(6): 1293–1304. doi: 10.11743/ogg20180618

    [12] 陈海莲.哈得逊油田东河砂岩井间隔夹层测井预测方法研究[D].北京: 中国石油大学(北京), 2016.

    CHEN Hailian. Research on the prediction method of interwell interlayer in Donghe sandstone of Hudson Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2016.

    [13] 贺婷婷,段太忠,赵磊,等. 塔河油田九区三叠纪下油组夹层识别及分布规律[J]. 东北石油大学学报,2017,41(6):26–35. doi: 10.3969/j.issn.2095-4107.2017.06.004

    HE Tingting, DUAN Taizhong, ZHAO Lei, et al. Interlayer identification and distribution of Triassic lower oil group in Block 9 of Tahe Oilfield[J]. Journal of Northeast Petroleum University, 2017, 41(6): 26–35. doi: 10.3969/j.issn.2095-4107.2017.06.004

    [14] 倪小威,徐思慧,别康,等. 不同井眼偏心距下水平井阵列侧向测井围岩校正研究[J]. 石油钻探技术,2018,46(4):121–126.

    NI Xiaowei, XU Sihui, BIE Kang, et al. Surrounding rock influence correction for array laterolog responses with borehole eccentricities in horizontal wells[J]. Petroleum Drilling Techniques, 2018, 46(4): 121–126.

    [15] 胡松,周灿灿,王昌学,等. 水平井各向异性地层双感应测井响应数值模拟[J]. 科学技术与工程,2014,14(11):10–13, 26. doi: 10.3969/j.issn.1671-1815.2014.11.003

    HU Song, ZHOU Cancan, WANG Changxue, et al. Dual induction logging numerical simulation of anisotropic formation in horizontal wells[J]. Science Technology and Engineering, 2014, 14(11): 10–13, 26. doi: 10.3969/j.issn.1671-1815.2014.11.003

    [16]

    LI Hu, WANG Lei. Fast modeling and practical inversion of laterolog-type downhole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 1–8.

    [17] 王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914–922.

    WANG Lei, FAN Yiren, YUAN Chao, et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD)[J]. Petroleum Exploration and Development, 2018, 45(5): 914–922.

    [18]

    PARDO D, TORRES-VERDIN C. Fast 1D inversion of logging-while-drilling resistivity measurements for improved estimation of formation in high-angle and horizontal wells[J]. Geophysics, 2015, 80(2): E111–E124. doi: 10.1190/geo2014-0211.1

  • 期刊类型引用(2)

    1. 李永康, 张紫檀, 张卫卫, 王鹏, 刘晋伟, 郭慧. 胜利油田长效扩张式分层注水技术. 石油钻探技术. 2020(04): 100-105 . 本站查看
    2. 黎伟, 夏杨, 陈曦. RFID智能滑套设计与试验研究. 石油钻探技术. 2019(06): 83-88 . 本站查看

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  236
  • PDF下载量:  104
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-10-11
  • 修回日期:  2021-01-26
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回