Research and Application of Prolonged-Effect Acidizing Technology for Water Injection Wells in the Bohai Oilfield
-
摘要: 针对渤海油田注水井重复酸化效果逐渐变差的问题,进行了注水井延效酸化技术研究。采用3种低浓度深部缓速酸进行协同增效,加强酸液的储层保护性能,并加入防膨剂和表面活性剂,配制了延效酸;在温度60 ℃条件下,测试了延效酸对现场垢样、钙蒙脱石和二氧化硅的溶蚀效果,抑制注入水结垢性能、洗油性能、缓速和总溶蚀性能,以及动态驱替延效性能。试验得出:延效酸对钙蒙脱石和现场垢样的溶蚀率分别可达45.23%和86.08%,对二氧化硅的溶蚀率仅0.22%;抑制结垢能力强;酸液表面张力12.77 mN/m;延效酸与岩粉分别反应2,4和6 h后溶蚀率可达9.39%、13.64%和24.54%;动态驱替酸化后注入20倍孔隙体积的水,渗透率增大倍数仍然稳定在1.8~1.9倍。注水井延效酸化技术在渤海油田应用14井次,应用效果显著。研究表明,延效酸具有综合解堵效果好、保护骨架、缓速性好、总溶蚀率高和延效性好等优点,具有推广应用价值。Abstract: In response to the deteriorating reacidizing of water injection wells in the Bohai Oilfield, a study on the prolonged-effect acidizing technology for water injection wells was carried out. The prolonged-effect acid was prepared by adding an anti-swelling agent and surfactant to three kinds of deep retarded acid in low concentrations that enhanced the reservoir protection capability of acid. At 60 ℃, the as-prepared acid was tested with respect to its dissolution on field scale samples, calcium montmorillonite, and silica, its scaling inhibition of injected water, oil-washing performance, retardation, total dissolution performance, and prolonged effect with dynamic displacement. The results showed that the dissolution rate of the prolonged-effect acid on the calcium montmorillonite and scale samples could reach 45.23% and 86.08% respectively, while that on silica was only 0.22%. The acid had strong inhibition of scaling and a surface tension of 12.77 mN/m. Its dissolution rate on rock powder could reach 9.39%, 13.64%, and 24.54% after 2, 4, and 6 h, respectively. And after dynamic displacement, the increase in the permeability after the injection of water 20 times the pore volume remained at 1.8–1.9 times. The proposed technology was applied to 14 wells in the Bohai Oilfield, achieving good results. The results showed that the prolonged-effect acid, with a high total dissolution rate, performed well in unblocking the water injection wells, protecting the framework, retarding the reaction of acid and rock and prolonging effect, which makes it worthy of wide application.
-
Keywords:
- reacidizing /
- prolonged effect /
- valid period /
- water injection well /
- Bohai Oilfield
-
深部硬地层机械钻速低一直是钻井工程领域的难题之一[1-2]。旋转冲击钻井和扭转冲击钻井由于具有提高硬地层钻进效率、延长钻头使用寿命等优势而成为研究热点,但现场应用过程中仍存在提速工具性能不稳定,提速效果差异大等问题[3]。为此,人们进行了大量的理论分析、数值模拟及试验研究,试图通过深入认识岩石的破碎机理和提速机理彻底解决该问题[4-13]。但这些研究大多针对的是常规圆形切削齿或常规破岩方式,对锥形齿等非平面齿的旋转冲击切削与扭转冲击切削的研究较少。一方面,关于锥形齿的常规破岩机理尚未完成掌握;另一方面,锥形齿等非平面齿旋转冲击与扭转冲击破岩机理的试验研究基本未开展。为了进一步认识锥形齿旋转冲击和扭转冲击的破岩机理与提速机理,笔者基于有限元法建立了锥形齿旋转冲击破岩和扭转冲击破岩2种破岩方式的三维数值模拟模型,研究了横向冲击作用和纵向冲击作用下,锥形齿切削岩石过程中的岩石裂纹形成及扩展情况,岩屑形成、崩落以及应力状态变化规律,并采用破岩比功、岩石破碎体积、破碎深度3个指标评价锥形齿在不同破岩方式下的破岩效率,从而为钻头设计、冲击器和钻井参数优化提供理论依据。
1. 锥形齿破岩模拟模型的建立与验证
1.1 锥形齿破岩模拟模型的建立
冲击钻井是在施加固定钻压破岩的同时,在钻头轴向或周向上施加一个具有一定幅值和频率的冲击力进行破岩钻进的钻井方式。在钻头轴向上施加周期性高频冲击力通常称为旋转冲击方式,在钻头周向上施加周期性高频冲击力称为扭转冲击方式。锥形齿冲击破岩的物理模拟模型如图1所示。笔者利用ABAQUS有限元软件,以线性D-P准则为屈服准则,在模型岩石的两侧和底部施加非反射边界。锥形齿的参数:直径16.0 mm,高21.0 mm,锥顶角78°,锥顶半径3.0 mm,后倾角15°,切削深度2.0 mm。采用花岗岩岩样,岩样参数:长度40.0 mm,宽度30.0 mm,高度30.0 mm,密度2.62 g/cm3,弹性模量35.46 GPa,泊松比0.28,内聚力37.88 MPa,内摩擦角53.18°,单轴抗压强度164.2 MPa。采用C3D8R网格划分模型,加密单元长度0.25 mm。
当数值模拟锥形齿常规切削时,对锥形齿施加2 kN的钻压,切削速度1 m/s。
数值模拟锥形齿旋转冲击和扭转冲击破岩时,在常规切削的基础上对应施加单个或多个周期为2 ms的旋转冲击幅值(冲击力与钻压的比)与扭转冲击幅值(最大冲击速度与切削速度的比)。岩石的损伤程度根据损伤值[14-15]判别:损伤值越大,损坏越严重;当损伤值为1时,表明岩石被彻底破坏。
1.2 锥形齿破岩模拟模型的验证
按照文献[16]的试验原形,利用上文建立的数值模拟模型计算出锥形齿不同切削深度下的平均切削力,并对模拟计算结果与文献[16]的试验结果进行对比,结果见图2所示。
由图2可知,模拟计算出的平均切削力随切削深度的变化趋势与试验测试结果相同,模拟计算结果与试验结果的最小相对误差为2.97%,最大相对误差为12.24%,平均相对误差为7.12%,在可接受范围内,表明模拟计算结果具有一定的可靠性。
2. 锥形齿冲击破岩过程分析
2.1 锥形齿旋转冲击破岩过程
模拟计算了锥形齿旋转冲击破岩过程中,不同时刻岩石内的最大主应力(拉正压负)、最大剪应力和岩石损伤,结果如图3所示。
根据模拟结果(见图3),可以将岩石破碎过程划分为4个阶段:
1)切削齿侵入岩石阶段(0–t1)。由t1时刻的最大主应力、最大剪应力和岩石损伤云图可知,锥形齿吃入岩石,岩石与切削齿的接触点出现压应力集中,岩石损伤发生在剪应力与压应力作用区域。
2)岩石损伤贯通裂纹萌生阶段(t1–t2)。由t2时刻的最大主应力、最大剪应力和岩石损伤云图可知,随着切削齿吃入岩石,岩石损伤区域以接触点为中心向外辐射,在拉应力区出现了由岩石内部到自由面的损伤贯通裂纹。
3)岩石损伤贯通裂纹扩展阶段(t2–t3)。由t3时刻的损伤云图可看出,随着冲击载荷增大,岩石内部损伤裂纹的宽度和到自由面贯通裂纹的宽度不断扩大。
4)裂缝贯通岩屑崩落阶段(t3–t4,t5)。由t4和t5时刻的损伤云图可以看出,在冲击载荷产生的拉应力作用下,裂纹损伤区域扩大汇集形成主裂缝并延伸至自由面,岩石发生体积破碎,岩屑崩落。
2.2 锥形齿扭转冲击破岩过程
模拟计算锥形齿扭转冲击破岩过程中,不同时刻的岩石损伤云图,结果见图4。通过分析图4可以将扭转冲击破碎岩石的过程划分为切削齿侵入岩石(t0–t1)、岩石损伤贯通裂纹萌生(t1–t2)、岩石损伤贯通裂纹扩展(t2–t3)和裂缝贯通岩屑崩落(t3–t4,t5)等4个阶段。拉应力是引起岩石内部到表面贯通裂缝产生的主要原因,压剪应力是岩石内部出现损伤和形成微裂纹的主要原因。
同时,图5给出了常规切削、旋转冲击和扭转冲击3种不同破岩方式下岩屑的形成情况,可以看出,旋转冲击和扭转冲击2种方式的岩石破碎体积和破碎坑深度均比常规切削大,其中旋转冲击比扭转冲击对岩石的损伤更严重。
3. 锥形齿破岩效率分析
为了分析不同破岩方式和冲击参数对锥形齿冲击破岩效率的影响,基于模拟计算结果,分别采用破碎深度、破碎体积、破岩比功3个指标评价不同破岩方式下锥形齿的破岩效率。
3.1 岩石破碎深度与破碎体积
3.1.1 冲击幅值的影响
岩石破碎体积为模拟计算出的岩石失效单元(岩石损伤值为1的单元)数量与失效单元体积的乘积。在一定冲击频率下,分析了冲击幅值对锥形齿旋转冲击和扭转冲击破岩方式下岩石破碎深度和破碎体积的影响,结果分别如图6、图7所示。
从图6和图7可以看出:随着冲击幅值增大,锥形齿旋转冲击和扭转冲击破岩方式下的岩石破碎体积均会增大,但旋转冲击破岩方式下的破碎体积增加幅度比扭转冲击破岩方式大;随冲击幅值增大,旋转冲击破岩方式下的岩石破碎深度增深,而扭转冲击破岩方式下的岩石破碎深度几乎不变。
由图6可知:对于旋转冲击破岩,冲击幅值较小时(小于25%),冲击作用并未造成岩石大体积破碎,破碎体积增加幅度较小;冲击幅值较大时(25%~75%),切削齿下部的岩石承受的应力达到岩石的强度极限,随着冲击幅值增大,破碎体积快速增大;冲击幅值过大时(75%~100%),冲击造成的岩石压实与裂隙发育已达到极限,破碎体积逐渐趋于稳定。由图6还可得到:旋转冲击破岩方式的最佳冲击幅值为75%;与常规切削破岩方式(冲击幅值为0)相比,旋转冲击破岩方式的岩石破碎体积提高了29.78%,岩石破碎深度增加了16.67%。
从图7可以看出,对于扭转冲击破岩,扭转冲击幅值为0~20%时,岩石破碎体积快速增大,超过20%以后,岩石破碎体积趋于稳定。单纯从提高破岩体积考虑,不必过于追求提高扭转冲击幅值,达到20%以上即可。与常规切削破岩方式(冲击幅值为0时)相比,岩石破碎体积最多增加了13.22%,岩石破碎深度只增加了0.513%。
3.1.2 冲击频率的影响
在一定冲击幅值(75%)下,分析了冲击频率对锥形齿旋转冲击和扭转冲击破岩方式下岩石破碎体积和破碎深度的影响,结果分别如图8、图9所示。
从图8和图9可以看出:随着冲击频率增大,锥形齿旋转冲击与扭转冲击破岩方式下的岩石破碎体积和破碎深度均增大;当冲击频率达到400 s–1时,锥形齿2种破岩方式下的岩石破碎体积增加趋于平缓,但总体上旋转冲击破岩方式下的增加幅度比扭转冲击破岩方式大。与常规切削破岩方式(冲击频率为0)相比,锥形齿旋转冲击方式下的岩石破碎体积最多增加了38.64%,岩石破碎深度增加了22.95%;扭转冲击破岩方式的岩石破碎体积最多增加了14.5%,岩石破碎深度增加了0.77%。
3.2 破岩比功
破岩比功为破碎单位体积岩石切削齿所做的功,其越小,破岩效率越高,表达式为[17-18]:
P=FsV=∫T0f(fx,fy)v(vx,vx)dtV=T∫0(fxi+fyj)(vxi+vxj)dtV=T∫0(fxvx+fyvy)dtV (1) 式中:
P 为切削齿的破岩比功,mJ/mm3;F为切削齿作用在岩石上的力,N;s为切削齿的切削位移,mm;V 为切削齿破碎岩石体积,mm3;fx 为切削力,N;fy 为轴向力,N;vx 为切削速度,m/s;vy 为轴向速度,m/s;T 为模拟时长,s。fx,fy,vx和vy均为以时间t为因变量的函数,为简化函数表达式,以各数据的平均值取代复杂的函数表达式,最终表达式为:
P=ˉfxˉvx+ˉfyˉvyVT (2) 式中:
ˉfx 为平均切削力,N;ˉfy 为平均轴向力,N;ˉvx 为平均切削速度,m/s;ˉvy 为平均轴向速度,m/s。在冲击频率一定的情况下,分析了冲击幅值对锥形齿旋转冲击和扭转冲击破岩方式下破岩比功的影响,结果见图10。
从图10可以看出:不同冲击幅值下锥形齿扭转冲击破岩方式下的破岩比功均低于旋转冲击破岩方式;冲击幅值为75%时,锥形齿旋转冲击破岩方式下的破岩比功最低,为119.29 mJ/mm3;冲击幅值为25%时,锥形齿扭转冲击破岩方式下的破岩比功最低,为107.94 mJ/mm3。与上文不同冲击幅值下锥形齿岩石破碎体积和破碎深度分析结果结合可以得出,锥形齿旋转冲击破岩方式下的最佳冲击幅值应该等于或高于75%,扭转冲击破岩方式下的最佳冲击幅值应该等于或高于25%。
在冲击幅值一定情况下,分析了冲击频率对锥形齿旋转冲击和扭转冲击破岩方式下破岩比功的影响,结果如图11所示。
从图11可以看出,不同冲击频率下,锥形齿扭转冲击破岩方式下的破岩比功均低于旋转冲击破岩方式;冲击频率为200 s–1时,锥形齿扭转冲击破岩方式下的破岩比功最低,为101.04 mJ/mm3;当冲击频率为300 s–1时,锥形齿旋转冲击破岩方式的破岩比功最低,为110.657 mJ/mm3。考虑到上文不同冲击频率下锥形齿破岩体积和破岩深度的分析结果,锥形齿旋转冲击和扭转冲击破岩方式下的最佳冲击频率均应该大于等于400 s–1。
4. 结 论
1)锥形齿旋转冲击和扭转冲击破岩过程均可划分为切削齿侵入岩石、岩石损伤贯通裂纹萌生、岩石损伤贯通裂纹扩展、裂缝贯通岩屑崩落4个阶段,拉应力控制从岩石内部到表面贯通裂缝的生成,压剪应力促进岩石内部微裂缝的形成。
2)锥形齿旋转冲击和扭转冲击破岩方式下的岩石破碎体积都会随着冲击幅值和冲击频率增大而增大,但旋转冲击破岩方式下岩石破碎体积的增加幅度比扭转冲击破岩方式大。随着冲击频率增大,锥形齿旋转冲击和扭转冲击破岩方式下的岩石破碎深度都增加。在一定冲击频率下,只有旋转冲击破岩方式的破碎深度随冲击幅值增大而增加,扭转冲击破岩方式的破碎深度随冲击幅值增大几乎不变。
3)旋转冲击和扭转冲击2种破岩方式下,当冲击幅值和冲击频率增加到一定值时,锥形齿的岩石破碎体积增大都趋于平缓。对于所研究的锥形齿破碎硬岩石,旋转冲击破岩方式的最佳冲击幅值不低于75%,扭转冲击破岩方式的最佳冲击幅值不低于20%,2种破岩方式的最佳冲击频率为400 s–1。
4)常规切削、旋转冲击和扭转冲击3种破岩方式下,锥形齿常规切削的破岩比功最大;不同冲击幅值和冲击频率下,与旋转冲击破岩方式相比,锥形齿扭转冲击破岩方式下的破岩比功普遍较低。
-
表 1 现场垢样、钙蒙脱石和二氧化硅静态溶蚀试验结果
Table 1 Static dissolution results for the field scale samples, calcium montmorillonite, and silica
试样 反应前质量/g 反应后质量/g 溶蚀率,% 现场垢样 10.439 1.453 86.08 10.088 1.314 86.97 钙蒙脱石 5.003 2.740 45.23 二氧化硅 5.001 4.990 0.22 表 2 酸液延效动态驱替评价试验结果
Table 2 Results for dynamic displacement evaluation of prolonged-effect acid
岩心 酸液 酸化前
渗透率/mD酸化后与酸化前渗透率比值 注入10倍孔隙体积水 注入20倍孔隙体积水 1# 延效酸 58 1.9 1.9 2# 延效酸 54 1.7 1.8 3# 常规酸 55 1.3 1.1 4# 常规酸 7 1.1 0.7 表 3 渤海油田注水井延效酸化技术应用数据
Table 3 Application of prolonged-effect acidizing technology to water injection wells in the Bohai Oilfield
井号 注入压力/MPa 注入量/(m3·d–1) 视吸水指数增大倍数 增注量/m3 有效期/d 酸化前 酸化后 酸化前 酸化后 S-D15 10.0 9.1 141 515 4.0 36 655 150 B-A7 11.0 8.5 501 805 2.1 39 149 142 B-A20 11.7 5.5 254 521 4.4 138 038 567 B-C13 9.3 6.0 509 530 1.6 59 003 322 K-A14 8.9 2.5 370 541 5.2 88 859 581 S-C41 9.9 0.9 334 594 19.6 201 289 673 B-A4 9.0 5.0 43 509 21.3 96 404 228 P-D50 6.0 5.9 350 576 1.7 5 475 40 Q-P1 11.0 3.0 254 377 5.4 125 659 346 B-A4-2 9.0 3.0 306 520 5.1 35 099 273 K-A19 11.0 5.5 251 254 2.0 15 487 258 K-A20 12.6 6.0 504 557 2.3 11 592 118 K-A9 12.0 4.2 466 477 2.9 10 842 211 K-A8 10.0 4.0 720 603 2.1 2 480 164 平均 3.2 61 859 288 表 4 B-C13井3次酸化效果对比
Table 4 Comparison among three applications of acidizing in Well B-C13
酸化次序 酸液 酸液用量/ m3 注入压力/MPa 注入量/(m3·d–1) 有效期/d 酸化前 酸化后 酸化前 酸化后 1 多氢酸 65 9.8 0 164 528 63 2 氟硼酸 60 11.4 9.8 268 450 62 3 延效酸 28 9.3 6.0 509 503 322 -
[1] 王国壮,梁承春,孙招锋,等. 红河油田长6特低渗油藏多元复合酸降压增注技术[J]. 石油钻探技术,2016,44(4):96–101. WANG Guozhuang, LIANG Chengchun, SUN Zhaofeng, et al. Decompression and augmented injection technology with polybasic recombination acid for Chang-6 ultra-low permeability reservoir in Honghe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 96–101.
[2] 李进,王昆剑,韩耀图,等. 渤海油田注水井酸化效果预测评价方法[J]. 钻井液与完井液,2019,36(4):506–511. doi: 10.3969/j.issn.1001-5620.2019.04.020 LI Jin, WANG Kunjian, HAN Yaotu, et al. Methods of predicting and evaluating effect of acidizing job of water injectors in Bohai Oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 506–511. doi: 10.3969/j.issn.1001-5620.2019.04.020
[3] 程兴生,舒玉华,陈伟,等. 桩104区块重复酸化增注工作液优选[J]. 钻井液与完井液,1998,15(3):17–20. CHENG Xingsheng, SHU Yuhua, CHEN Wei, et al. Optimization of an acidizing fluid in Zhuang 104 Block[J]. Drilling Fluid & Completion Fluid, 1998, 15(3): 17–20.
[4] 舒玉华,张汝生,蒋卫东. 轮南油田超深井重复酸化增注工作液[J]. 钻井液与完井液,1999,16(1):12–14. SHU Yuhua, ZHANG Rusheng, JIANG Weidong. The working fluid of reacidzing and stimulation of injection for super-deep well in Lunnan Oilfield[J]. Drilling Fluid & Completion Fluld, 1999, 16(1): 12–14.
[5] 刘淑萍,高瑞民,刘亚勇,等. 文留油田低渗透砂岩储层重复酸化用酸液及其应用[J]. 油田化学,2004,21(2):107–109, 102. LIU Shuping, GAO Ruimin, LIU Yayong, et al. Acidizing fluid for repeated acidization stimulation of low permeable reservoirs in Wenliu Oil Fields and its application[J]. Oilfield Chemistry, 2004, 21(2): 107–109, 102.
[6] 吕宝强,李向平,李建辉,等. 我国重复酸化酸液体系的应用[J]. 油田化学,2014,31(1):136–140. LYU Baoqiang, LI Xiangping, LI Jianhui, et al. Application situation of reacidizing system in China[J]. Oilfield Chemistry, 2014, 31(1): 136–140.
[7] 孙林,孟向丽,蒋林宏,等. 渤海油田注水井酸化低效对策研究[J]. 特种油气藏,2016,23(3):144–147. doi: 10.3969/j.issn.1006-6535.2016.03.035 SUN Lin, MENG Xiangli, JIANG Linhong, et al. Countermeasures of inefficient acidification in water injection wells of Bohai Oilfield[J]. Special Oil & Gas Reservoirs, 2016, 23(3): 144–147. doi: 10.3969/j.issn.1006-6535.2016.03.035
[8] 易飞,赵秀娟,刘文辉,等. 渤海油田注水井解堵增注技术[J]. 石油钻采工艺,2004,26(5):53–56. doi: 10.3969/j.issn.1000-7393.2004.05.014 YI Fei, ZHAO Xiujuan, LIU Wenhui, et al. Plugging removal and injection enhancement technology for the water injection wells in Bohai Oilfield[J]. Oil Drilling & Production Technology, 2004, 26(5): 53–56. doi: 10.3969/j.issn.1000-7393.2004.05.014
[9] 景步宏. 有机多元酸(SY)缓速及防沉淀性能研究[J]. 石油钻探技术,2009,37(3):103–106. doi: 10.3969/j.issn.1001-0890.2009.03.026 JING Buhong. Retardation and deposition control mechanism of organic multivariate acid (SY)[J]. Petroleum Drilling Techniques, 2009, 37(3): 103–106. doi: 10.3969/j.issn.1001-0890.2009.03.026
[10] 刘义刚,陈征,孟祥海,等. 渤海油田分层注水井电缆永置智能测调关键技术[J]. 石油钻探技术,2019,47(3):133–139. doi: 10.11911/syztjs.2019044 LIU Yigang, CHEN Zheng, MENG Xianghai, et al. Cable implanted intelligent injection technology for separate injection wells in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 133–139. doi: 10.11911/syztjs.2019044
[11] 孙林,杨万有,李旭光,等. 海上油田爆燃压裂技术研究与现场试验[J]. 石油钻探技术,2019,47(5):91–96. doi: 10.11911/syztjs.2019087 SUN Lin, YANG Wanyou, LI Xuguang, et al. Research and field test of deflagration fracturing technology in offshore oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91–96. doi: 10.11911/syztjs.2019087
[12] 邓建明. 渤海油田低产低效井综合治理技术体系现状及展望[J]. 中国海上油气,2020,32(3):111–117. DENG Jianming. Status and prospect comprehensive treatment technologies for low production and low efficiency wells in Bohai Oilfield[J]. China Offshore Oil and Gas, 2020, 32(3): 111–117.
[13] 赵立强,陈祥,山金城,等. 注水井螯合酸复合解堵体系研究与应用[J]. 西南石油大学学报(自然科学版),2020,42(3):123–131. ZHAO Liqiang, CHEN Xiang, SHAN Jincheng, et al. Research and application of chelating acid blocking removal system for injection wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 123–131.
[14] 张丽平,张璐,兰夕堂,等. 非酸解堵技术在渤海油田的应用[J]. 钻井液与完井液,2018,35(2):116–121. doi: 10.3969/j.issn.1001-5620.2018.02.019 ZHANG Liping, ZHANG Lu, LAN Xitang, et al. Application of non-acid block removing technology in Bohai Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 116–121. doi: 10.3969/j.issn.1001-5620.2018.02.019
[15] 刘玉国,贾培锋,陈刚,等. 疏松砂岩油藏水平井均衡酸洗工艺[J]. 断块油气田,2019,26(6):805–809. LIU Yuguo, JIA Peifeng, CHEN Gang, et al. Uniform acidizing technology for horizontal wells in unconsolidated sandstone reservoirs[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 805–809.
[16] BENNETT P C. Quartz dissolution in organic-rich aqueous systems[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1781–1797. doi: 10.1016/0016-7037(91)90023-X
[17] BLAKE R E, WLAKEALTER L M. Kinetics of feldspar and quartz dissolution at 70~80 ℃ and near-neutral pH: effects of organic acids and NaCl[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2043–2059.
[18] 陈传平,固旭,周苏闽,等. 不同有机酸对矿物溶解的动力学实验研究[J]. 地质学报,2008,82(7):1007–1012. doi: 10.3321/j.issn:0001-5717.2008.07.019 CHEN Chuanping, GU Xu, ZHOU Sumin, et al. Experimental research on dissolution dynamics of main minerals in several aqueous organic acid solutions[J]. Acta Geologica Sinica, 2008, 82(7): 1007–1012. doi: 10.3321/j.issn:0001-5717.2008.07.019
[19] 杨乾隆,李立标,陶思羽,等. 注水井不动管柱螯合酸脉冲式注入酸化增注技术[J]. 石油钻探技术,2018,46(5):90–94. YANG Qianlong, LI Libiao, TAO Siyu, et al. Chelate acid pulse injection and acidizing stimulation technology for immobilized injecting well string[J]. Petroleum Drilling Techniques, 2018, 46(5): 90–94.
[20] 孙林,杨军伟,周伟强,等. 一种适合海上砂岩油田的单段塞活性酸体系[J]. 钻井液与完井液,2016,33(1):97–101. SUN Lin, YANG Junwei, ZHOU Weiqiang, et al. Acidizing offshore sandstone reservoir with a single slug active acid system[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 97–101.
-
期刊类型引用(11)
1. 田雨,张昕,张鹏翔,孙耀宁,许晨星,宋西岩. 冲击频率可调的钻井提速工具结构设计与试验. 石油机械. 2024(02): 36-43 . 百度学术
2. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 . 百度学术
3. 孙养清,易先中,万继方,易军,吴霁薇,刁斌斌,陈志湘. 机械式复合冲击器的工作特性分析. 石油机械. 2024(06): 29-37+108 . 百度学术
4. 陈炼,宋朝晖,王新东,张武涛,谢正森,粟籽华. 单牙轮钻头楔形牙齿偏转角优化方法. 石油钻探技术. 2023(01): 57-61 . 本站查看
5. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 . 百度学术
6. 闫炎,韩礼红,刘永红,杨尚谕,曹婧,牟易升. 全尺寸PDC钻头旋转冲击破岩过程数值模拟. 石油机械. 2023(06): 36-42 . 百度学术
7. 何超,邓虎,罗祝涛,李枝林,徐建超. 扭力冲击器流体仿真优化与试验. 钻采工艺. 2023(04): 26-32 . 百度学术
8. 王勇军,刘刚,佟铮,赵长亮,郑宇轩,冯守涛. 旋冲螺杆钻具在硬岩地热钻探中的应用研究. 钻探工程. 2023(05): 146-152 . 百度学术
9. 毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 . 百度学术
10. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
11. 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 . 本站查看
其他类型引用(6)