纳米二氧化硅改性聚合物的油藏适用性评价与微观驱油效果研究

雷天猛, 王秀军, 王姗姗, 曹杰

雷天猛, 王秀军, 王姗姗, 曹杰. 纳米二氧化硅改性聚合物的油藏适用性评价与微观驱油效果研究[J]. 石油钻探技术, 2021, 49(1): 107-112. DOI: 10.11911/syztjs.2021016
引用本文: 雷天猛, 王秀军, 王姗姗, 曹杰. 纳米二氧化硅改性聚合物的油藏适用性评价与微观驱油效果研究[J]. 石油钻探技术, 2021, 49(1): 107-112. DOI: 10.11911/syztjs.2021016
LEI Tianmeng, WANG Xiujun, WANG Shanshan, CAO Jie. Research on Reservoir Applicability Evaluation and Micro Oil Flooding Effect of a Nano-Silica Modified Polymer[J]. Petroleum Drilling Techniques, 2021, 49(1): 107-112. DOI: 10.11911/syztjs.2021016
Citation: LEI Tianmeng, WANG Xiujun, WANG Shanshan, CAO Jie. Research on Reservoir Applicability Evaluation and Micro Oil Flooding Effect of a Nano-Silica Modified Polymer[J]. Petroleum Drilling Techniques, 2021, 49(1): 107-112. DOI: 10.11911/syztjs.2021016

纳米二氧化硅改性聚合物的油藏适用性评价与微观驱油效果研究

基金项目: 国家自然科学基金项目“驱油用可控降解链球型纳米流体:制备–构像–综合性能平衡性调控机制研究”(编号:51874347)和山东省自然科学基金项目“基于两亲纳米SiO2/聚合物的耐温抗盐驱油体系构建及机理”(编号:ZR2019MEE037)联合资助
详细信息
    作者简介:

    雷天猛(1994—),男,陕西合阳人,2014年毕业于西安石油大学石油工程专业,石油与天然气工程专业在读硕士研究生,主要从事丙烯酰胺类聚合物驱油提高采收率研究。E-mail: 1310395870@qq.com

  • 中图分类号: TE357.46+1

Research on Reservoir Applicability Evaluation and Micro Oil Flooding Effect of a Nano-Silica Modified Polymer

  • 摘要: 为增强驱油用聚合物的油藏适用性,进一步提高原油采收率,评价了一种具有纳米颗粒/聚合物复合结构的纳米二氧化硅改性聚合物的溶液特性及其驱油效果。在温度90 ℃、矿化度20 000 mg/L条件下,利用Brookfiled黏度计和安东帕高温高压流变仪MCR,评价了纳米二氧化硅改性聚合物与2种未改性聚合物溶液性能的差异;通过岩心驱替试验,分析了上述3种聚合物的驱油效果;通过微观驱油试验,观察了孔隙模型注入3种聚合物前后原油的分布情况。试验得出,由于纳米二氧化硅改性聚合物分子间相互作用更强,分子间网络具有更好的形变恢复能力,其增黏、抗温、抗盐、抗剪切和抗老化等性能与其他2种聚合物相比均有大幅提高。微观驱油效果研究发现,纳米二氧化硅改性聚合物可将采收率提高21百分点,高于支化聚合物(13百分点)和线型聚合物(9百分点)。微观驱油效果研究结果表明,纳米二氧化硅改性聚合物可以改善多孔介质的非均质性,能大幅减少多孔介质中孤岛状油珠和长条状剩余油的数量,显著降低残余油饱和度。
    Abstract: The solution characteristics and oil displacement effect of a nano-silica modified polymer with nanoparticle-polymer composites were evaluated to enhance the applicability of oil displacement polymers in reservoirs and further improve oil recovery. The performance differences between different polymer solutions, including a nano-silica modified polymer and two unmodified polymers, were evaluated by Brookfield viscometer and HTHP Anton Paar rheometer at 90 °C and 20,000 mg/L of salinity. The oil displacement effects of above polymers were analyzed by core flooding experiments. The distributions of crude oil in the pore model before and after flooding with three kinds of polymers were observed through micro oil flooding experiments. The experimental results showed that the molecular network had better performance in deformation recovery because the interaction between the molecules of nano-silica modified polymer was stronger. Compared with the other two polymers, the nano-silica modified polymer presented large improvement in increasing viscosity, improving temperature resistance, salt resistance, enhancing shearing endurance and aging stability, and increased the oil recovery ratio by 21 percentage points, which was greater than that of branched polymer (13 percentage points) and that of linear polymer (9 percentage points) respectively. So, the nano-silica modified polymer can effectively alleviate the heterogeneity of porous media, greatly reduce the number of island-like oil beads and long strip-like remaining oil in the porous media, and significantly decrease the saturation of residual oil.
  • 图  1   纳米二氧化硅改性聚合物、支化聚合物和线型聚合物溶液黏度与其质量浓度的关系

    Figure  1.   The relationship between viscosity and mass concentration for nano-silica modified polymer, branched polymer and linear polymer solution

    图  2   纳米二氧化硅改性聚合物、支化聚合物和线型聚合物溶液黏度与温度的关系

    Figure  2.   The relationship between viscosity and temperature for nano-silica modified polymer, branched polymer and linear polymer solution

    图  3   纳米二氧化硅改性聚合物、支化聚合物和线型聚合物溶液黏度与矿化度的关系

    Figure  3.   The relationship between viscosity and salinity for nano-silica modified polymer, branched polymer and linear polymer solution

    图  4   纳米二氧化硅改性聚合物、支化聚合物和线型聚合物溶液黏度与剪切时间的关系

    Figure  4.   The relationship between viscosity and the shearing time for nano-silica modified polymer, branched polymer and linear polymer solution

    图  5   纳米二氧化硅改性聚合物、支化聚合物和线型聚合物溶液黏度与老化时间的关系

    Figure  5.   The relationship between viscosity and aging time for nano-silica modified polymer, branched polymer and linear polymer solution

    图  6   采收率/含水率与纳米二氧化硅改性聚合物、支化聚合物和线型聚合物溶液注入量的关系

    Figure  6.   The relationship between oil recovery ratio or water cut and injected volume of nano-silica modified polymer, branched polymer and linear polymer solution

    图  7   线型聚合物、支化聚合物和纳米二氧化硅改性聚合物的微观驱油效果对比

    Figure  7.   Comparison of micro oil flooding results among nano-silica modified polymer, branched polymer and linear polymer

  • [1] 孙玉丽,钱晓琳,吴文辉. 聚合物驱油技术的研究进展[J]. 精细石油化工进展,2006,7(2):26–29. doi: 10.3969/j.issn.1009-8348.2006.02.008

    SUN Yuli, QIAN Xiaolin, WU Wenhui. Research progress in polymer flooding for enhanced oil recovery[J]. Advances in Fine Petrochemicals, 2006, 7(2): 26–29. doi: 10.3969/j.issn.1009-8348.2006.02.008

    [2] 徐辉,孙秀芝,韩玉贵,等. 超高分子聚合物性能评价及微观结构研究[J]. 石油钻探技术,2013,41 (3):114–118. doi: 10.3969/j.issn.1001-0890.2013.03.022

    XU Hui, SUN Xiuzhi, HAN Yugui, et al. Performance evaluation and microstructure study of ultra high molecular polymer[J]. Petroleum Drilling Techniques, 2013, 41 (3): 114–118. doi: 10.3969/j.issn.1001-0890.2013.03.022

    [3] 丁艳,朱竹. AM/AMPS/DMDAAC/OAM水溶性疏水缔合两性共聚物的合成及其性能[J]. 石油化工,2013,42(9):973–978. doi: 10.3969/j.issn.1000-8144.2013.09.006

    DING Yan, ZHU Zhu. Synthesis and properties of water-soluble hydrophobically associating ampholytic copolymers AM/AMPS/DMDAAC/OAM[J]. Petrochemical Technology, 2013, 42(9): 973–978. doi: 10.3969/j.issn.1000-8144.2013.09.006

    [4] 李欣,谢彬强,赵林. 新型耐温抗盐聚合物增黏剂的制备及评价[J]. 石油化工,2018,47 (6):595–599. doi: 10.3969/j.issn.1000-8144.2018.06.012

    LI Xin, XIE Binqiang, ZHAO Lin. Synthesis and evaluation of new- resistant and salt-tolerant polymer viscosifier[J]. Petrochemical Technology, 2018, 47 (6): 595–599. doi: 10.3969/j.issn.1000-8144.2018.06.012

    [5] 王东平,韩宇豪,谭佳文,等. 一种四元丙烯酰胺共聚物的合成及性能[J]. 石油化工,2019,48(11):1146–1150. doi: 10.3969/j.issn.1000-8144.2019.11.010

    WANG Dongping, HAN Yuhao, TAN Jiawen, et al. Synthesis and properties of tetra-acrylamide copolymer[J]. Petrochemical Technology, 2019, 48(11): 1146–1150. doi: 10.3969/j.issn.1000-8144.2019.11.010

    [6] 姜海峰,王德民,夏惠芬. 梳形聚合物溶液的流变性及驱油效果分析[J]. 大庆石油学院学报,2008,32(4):61–65.

    JIANG Haifeng, WANG Demin, XIA Huifen. Rheological properties of comb polymer solution and analysis of oil displacement effect[J]. Journal of Daqing Petroleum Institute, 2008, 32(4): 61–65.

    [7]

    MAURYA N K, KUSHWAHA P, MANDAL A. Studies on interfacial and rheological properties of water soluble polymer grafted nanoparticle for application in enhanced oil recovery[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 319–330.

    [8]

    ZHENG Chao, CHENG Yamin, WEI Qingbo, et al. Suspension of surface-modified nano-SiO2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery[J]. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 2017, 524: 169–177.

    [9] 于志省,夏燕敏,李应成. 耐温抗盐丙烯酰胺系聚合物驱油剂最新研究进展[J]. 精细化 工,2012,29(5):417–424, 442.

    YU Zhisheng, XIA Yanmin, LI Yingcheng. Newest research development of acrylamide based polymer flooding agent with temperature resistance and salt tolerance[J]. Fine Chemicals, 2012, 29(5): 417–424, 442.

    [10]

    CAO Jie, SONG Tao, ZHU Yuejun, et al. Application of amino-functionalized nanosilica in improving the thermal stability of acrylamide-based polymer for enhanced oil recovery[J]. Energy & Fuels, 2018, 32(1): 246–254.

    [11] 秦文龙,张志强,侯宝东,等. 纳米技术在提高原油采收率方面的应用新进展[J]. 断块油气田,2013,20(1):10–13.

    QIN Wenlong, ZHANG Zhiqiang, HOU Baodong, et al. Advance of nanotechnology application in enhancing oil recovery[J]. Fault-Block Oil & Gas Field, 2013, 20(1): 10–13.

    [12]

    PONNAPATI R, KARAZINCIR O, DAO E, et al. Polymer-functionalized nanoparticles for improving waterflood sweep efficiency: characterization and transport properties[J]. Industrial & Engineering Chemistry Research, 2013, 50(23): 13030–13036.

    [13] 杨莉,柯扬船. 聚丙烯酰胺纳米复合材料的合成与溶液特性[J]. 高分子材料科学与工程,2011,27(6):11–14.

    YANG Li, KE Yangchuan. Synthesis and solution properties of polyacrylamide nanocomposites[J]. Polymer Materials Science and Engineering, 2011, 27(6): 11–14.

    [14]

    KE Yangchuan, WEI Guangyao, WANG Yi. Preparation, morphology and properties of nanocomposites of polyacrylamide copolymers with monodisperse silica[J]. European Polymer Journal, 2008, 44(8): 2448–2457.

    [15] 曹绪龙,刘坤,韩玉贵,等. 耐温抗盐缔合聚合物的合成及性能评价[J]. 油气地质与采收率,2014,21(2):10–14. doi: 10.3969/j.issn.1009-9603.2014.02.003

    CAO Xulong, LIU Kun, HAN Yugui, et al. Synthesis and performance evaluation of temperature- and salt-resistant associative polymers[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(2): 10–14. doi: 10.3969/j.issn.1009-9603.2014.02.003

    [16]

    CAO Jie, SONG Tao, ZHU Yuejun, et al. Aqueous hybrids of amino-functionalized nanosilica and acrylamide-based polymer for enhanced oil recovery[J]. RSC Advances, 2018(8): 38056–38064.

    [17] 王代流. 河流相沉积油藏聚合物驱油开发效果的影响因素[J]. 油气地质与采收率,2009,16(1):62–65, 68. doi: 10.3969/j.issn.1009-9603.2009.01.017

    WANG Dailiu. Influencing factors of the effect of polymer flooding production in oil reservoirs of fluvial facies sedimentary[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(1): 62–65, 68. doi: 10.3969/j.issn.1009-9603.2009.01.017

图(7)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  200
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-12-02
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回