缝洞型碳酸盐岩油藏注氮气致稠机理研究

刘中云, 李兆敏, 赵海洋

刘中云, 李兆敏, 赵海洋. 缝洞型碳酸盐岩油藏注氮气致稠机理研究[J]. 石油钻探技术, 2021, 49(5): 75-80. DOI: 10.11911/syztjs.2021015
引用本文: 刘中云, 李兆敏, 赵海洋. 缝洞型碳酸盐岩油藏注氮气致稠机理研究[J]. 石油钻探技术, 2021, 49(5): 75-80. DOI: 10.11911/syztjs.2021015
LIU Zhongyun, LI Zhaomin, ZHAO Haiyang. Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2021, 49(5): 75-80. DOI: 10.11911/syztjs.2021015
Citation: LIU Zhongyun, LI Zhaomin, ZHAO Haiyang. Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2021, 49(5): 75-80. DOI: 10.11911/syztjs.2021015

缝洞型碳酸盐岩油藏注氮气致稠机理研究

基金项目: 国家科技重大专项“塔里木盆地碳酸盐岩油气田提高采收率关键技术示范工程”(编号:2016ZX05053)资助
详细信息
    作者简介:

    刘中云(1963—),男,湖北钟祥人,1983年毕业于江汉石油学院采油工程专业,2003年获中国科学院广州地球化学研究所地球化学专业博士学位,教授级高级工程师,主要从事油气田开发工程技术研究与管理工作。E-mail:liuzhongyun@pipechina.com.cn

  • 中图分类号: TE344,TE357.7

Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs

  • 摘要: 为了明确缝洞型碳酸盐岩油藏注氮气原油变稠的机理并制定相应的开发对策,提高注氮气的采收率,开展了缝洞型油藏注氮气致稠机理研究。该研究通过注氮气模拟试验,分析了氮气抽提作用、氮气含氧量和伴注水对原油黏度的影响。结果表明,氮气含氧是引起原油黏度增大的主导因素,含氧量为1%时,仅需2 d多即可将氧气耗尽,黏度达到18 000 mPa·s,为初始黏度的6倍;含氧量为5%时,在7 d多时间内黏度持续升高达到1 122 000 mPa·s,为初始黏度的366倍。乳化含水和抽提对原油黏度的影响相当,黏度升高1~3倍。研究表明,提高注入氮气的纯度是防止塔河油田缝洞型油藏注氮气致稠的最有效方法,研究结果为解决缝洞型碳酸盐岩油藏注氮气原油致稠问题提供了理论依据。
    Abstract: Research was conducted on the thickening mechanism of crude oil during nitrogen injection in fracture-cavity reservoirs to clarify the thickening mechanism and take corresponding countermeasures, thereby enhancing the oil recovery of nitrogen injection. In this study, simulation experiments of nitrogen injection were performed to analyze the influence on crude oil brought by nitrogen extraction, oxygen content in nitrogen, and mixed water. The experiments showed that the oxygen content in nitrogen was the major influential factor. When the oxygen content was 1%, it took only more than 2 days to exhaust the oxygen, and the viscosity reached 18 000 mPa·s, which was 6 times the initial viscosity. When the oxygen content increased to 5%, the viscosity continued to grow to 1 122 000 mPa·s within more than 7 days, which was 366 times the initial viscosity. Emulsification with water and nitrogen extraction resulted in the same effect on viscosity: the viscosity increased 1–3 times. The results demonstrate improving the purity of injected nitrogen is the most effective way to prevent crude oil thickening of fracture-cavity reservoirs during nitrogen injection in Tahe Oilfield. It has provided a theoretical basis for solving the problem of crude oil thickening brought by nitrogen injection in fracture-cavity carbonate reservoirs.
  • 图  1   注氮气超临界提抽模拟试验装置

    Figure  1.   Simulation device for supercritical extraction of injected nitrogen

    图  2   高温氧化试验流程

    Figure  2.   Procedures for a high-temperature oxidization experiment

    图  3   油样E在氧气含量1%下的组分变化情况

    Figure  3.   Change of components in Sample E with an oxygen content of 1%

    图  4   油样E在氧气含量5%下的组分变化情况

    Figure  4.   Change of components in Sample E with an oxygen content of 5%

    表  1   试验用原油初始黏度

    Table  1   Initial viscosity of crude oil in the experiment

    油样组分含量,%重均相对
    分子质量
    黏度/(mPa·s)
    饱和芳香胶质沥青质50 ℃130 ℃
    油样A27.3532.2824.1016.281 0814 57068.6
    油样B29.1331.1827.7511.941 0813 54062.5
    油样C30.8131.2217.3820.591 064 37020.4
    油样D32.3131.1318.5818.011 087 96137.1
    下载: 导出CSV

    表  2   不同油样对抽提效果的影响

    Table  2   Influence of different oil samples on extraction

    油样质量/
    g
    注入速度/
    (L·min–1
    注入量/
    L
    抽提量/
    g
    质量占比,%
    油样A72.702.96221.740.120.17
    油样B75.703.00230.880.120.16
    油样C109.10 2.97332.760.120.11
    油样D83.192.99253.730.070.08
    下载: 导出CSV

    表  3   氮气注入倍数对油样A抽提效果的影响

    Table  3   Influence of nitrogen injection multiples on extraction in Sample A

    油样质
    量/g
    注入速度/
    (L·min–1
    注入倍数抽提量/
    g
    质量
    比,%
    50 ℃黏度/
    (mPa·s)
    增黏
    倍数
    72.952.90 30.050.075 0261.10
    99.632.98 50.110.115 5191.21
    72.702.96100.120.176 7011.47
    63.352.97300.270.4314 933 3.27
    下载: 导出CSV

    表  4   注入速度对原油抽提效果的影响

    Table  4   Influence of nitrogen injection rates on extraction

    油样质量/g注入速度/(L·min−1注入量/L抽提量/g
    63.352.97579.650.27
    63.353.49579.650.25
    63.354.07579.650.24
    下载: 导出CSV

    表  5   油样E在不同含氧量氮气中氧化不同时间后的黏度

    Table  5   Viscosity of Sample E after oxidization for different time in nitrogen with different oxygen contents

    含氧量,%油样E氧化不同时间后的黏度/(mPa·s)
    6 h12 h30 h54 h78 h126 h174 h
    110 02012 60015 48017 75018 20018 30018 000
    512 50035 33062 00098 400228 000 453 000 1 122 000
    15 55 630384 000 9 360 000 32 750 000
    下载: 导出CSV

    表  6   油样E经不同含氧量氮气氧化前后C,H 和 N 元素含量的变化

    Table  6   Change of contents of Element C, H and N in Sample E before and after oxidization by nitrogen with different oxygen contents

    油样H,%C,%N,%S,%O,%
    油样E11.9585.130.511.800.61
    含氧量1%氮气抽提3次11.8084.990.511.840.86
    含氧量1%氮气抽提7次11.7884.940.511.860.91
    含氧量5%氮气抽提3次11.6684.710.511.891.23
    含氧量5%氮气抽提7次11.4984.360.491.861.85
    下载: 导出CSV

    表  7   TK1原油乳化含水样品黏度

    Table  7   Viscosity of emulsified water-bearing samples from Well TK1

    原油乳化含水率,%真实含水率,%50 ℃原油黏度/(mPa·s)
    原始样 5.51 385
    10 9.82 575
    2014.351 420
    3027.414 337
    4544.3822 590
    6056.06273 000
    7062.55449 000
    7567.34212 000
    下载: 导出CSV

    表  8   TK2原油乳化含水样品黏度

    Table  8   Viscosity of emulsified water-bearing samples from Well TK2

    原油乳化含水率,%真实含水率,%50 ℃原油黏度/(mPa·s)
    原始样 4.65 1 880
    10 9.16 2 480
    2020.8 7 500
    30 33.4513 200
    4040.122 800
    5553.044 000
    6563.5109 000
    7067.278 800
    下载: 导出CSV
  • [1] 杨景斌,侯吉瑞. 缝洞型碳酸盐岩油藏岩溶储集体注氮气提高采收率实验[J]. 油气地质与采收率,2019,26(6):107–114.

    YANG Jingbin, HOU Jirui. Experiments on enhancing oil recovery by nitrogen injection in fracture-vuggy carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 107–114.

    [2] 关华,郭平,赵春兰,等. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏,2020,32(2):149–160.

    GUAN Hua, GUO Ping, ZHAO Chunlan, et al. Nitrogen flooding mechanism in Yong66 Block of Yong’an Oilfield, Bohai Bay Basin[J]. Lithologic Reservoirs, 2020, 32(2): 149–160.

    [3] 姜海涛. 救援井与事故井连通技术研究[D]. 北京: 中国石油大学(北京), 2014.

    JIANG Haitao. Study on the Technology of Intercommunicating the relief well and the accident well[D].Beijing: China University of Petroleum(Beijing), 2014

    [4]

    WANG Leizheng, YU Wei. Gas huff and puff process in Eagle Ford Shale: recovery mechanism study and optimization[R]. SPE 195185, 2019.

    [5] 刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术,2019,47(4):75–82. doi: 10.11911/syztjs.2019092

    LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical differential velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82. doi: 10.11911/syztjs.2019092

    [6] 刘笑春,黎晓茸,杨飞涛,等. 长庆姬塬油田黄3区CO2驱对采出原油物性影响[J]. 油气藏评价与开发,2019,9(3):36–40. doi: 10.3969/j.issn.2095-1426.2019.03.007

    LIU Xiaochun, LI Xiaoxiang, YANG Feitao, et al. Effect of CO2 flooding on physical properties of produced crude oil in Huang 3 Block of Jiyuan Oilfield, Changqing[J]. Oil and Gas Reservoir Evaluation and Development, 2019, 9(3): 36–40. doi: 10.3969/j.issn.2095-1426.2019.03.007

    [7]

    YU Wei, LASHGARI H R, SEPEHRNOORI K. Simulation study of CO2 huff-n-puff process in Bakken tight oil reservoirs[R]. SPE 169575, 2014.

    [8] 唐人选,梁珀,吴公益,等. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术,2020,48(1):98–103. doi: 10.11911/syztjs.2019125

    TANG Renxuan, LIANG Po, WU Gongyi, et al. Analyzing and understanding the influencing factors of CO2 flooding in the Subei complex fault block reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125

    [9] 侯剑锋,刘鹏刚,曹廷义. 轻质原油注空气热特征及氧化动力学研究[J]. 油气藏评价与开发,2020,10(4):113–118.

    HOU Jianfeng, LIU Penggang, CAO Tingyi. Study on thermal characteristics and oxidation kinetics of light crude oil by air injec-tion[J]. Oil and Gas Reservoir Evaluation and Development, 2020, 10(4): 113–118.

    [10] 龙安林,张茂林,宋惠馨,等. 减氧空气驱低温氧化反应机理研究:以尕斯库勒油田E31油藏为例[J]. 能源与环保,2020,42(4):105–109.

    LONG Anlin, ZHANG Maolin, SONG Huixin, et al. Study on mechanism of low temperature oxidation reaction of deoxidized air drive: taking E31 reservoir of Gaskule Oilfield as an example[J]. Energy and Environmental Protection, 2020, 42(4): 105–109.

    [11] 廖广志,王红庄,王正茂,等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发,2020,47(2):334–340.

    LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao, et al. Characteristics and development methods of crude oil oxidation reaction in the whole temperature range of air injection[J]. Petroleum Exploration and Development, 2020, 47(2): 334–340.

    [12] 张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Diping. Research on location method of underground electromagnetic positioning[D]. Chengdu: University of Electronic Science and Technology of China, 2018

    [13]

    MONTES A R, GUTIERREZ D, MOORE R G, et al. Is high pressure air injection (HPAI) simply a flue-gas flood?[R]. SPE 133206, 2010.

    [14]

    REN S R, GREAVES M, RATHBONE R R. Air injection LTO process: an IOR technique for light-oil reservoirs[J]. Society of Petroleum Engineers Journal, 2002, 7(1): 90–99.

    [15]

    CLARA C, DURANDEAU M, QUENAULT G, et al. Laboratory studies for light oil air injection projects: potential application in Handil Field[J]. SPE Reservoir Evaluation&Engineering, 2000, 3(3): 239–248.

    [16] 王伟伟. 压力对轻质原油氧化动力学参数的影响[J]. 断块油气田,2020,27(1):109–112.

    WANG Weiwei. Influence of pressure on oxidation kinetic parameters of light crude oil[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 109–112.

    [17] 李一波,蒲万芬,王爱香,等. 轻质油藏注空气低温高压氧化实验研究[J]. 石油钻采工艺,2012,34(6):90–92. doi: 10.3969/j.issn.1000-7393.2012.06.026

    LI Yibo, PU Wanfen, WANG Aixiang, et al. Experimental study on low temperature high pressure oxidation in air injection in light oil reservoir[J]. Oil Drilling & Production Technology, 2012, 34(6): 90–92. doi: 10.3969/j.issn.1000-7393.2012.06.026

    [18] 文江波,罗海军,柯兰茜,等. 流动剪切对原油乳化含水率的影响及基于焓的定量表征[J]. 科学技术与工程,2019,19(11):104–107.

    WEN Jiangbo, LUO Haijun, KE Lanxi, et al. Effect of flow shear on water content of crude oil emulsion and quantitative characterization based on enthalpy[J]. Science Technology and Engineering, 2019, 19(11): 104–107.

    [19] 黄咏梅,赵宏伟,盖云飞. 薄层低渗透断块稠油氮气分散降黏增产技术研究与应用[J]. 长江大学学报(自然科学版),2020,17(2):71–77.

    HUANG Yongmei, ZHAO Hongwei, GAI Yunfei. Research and application of technology of reducing viscosity and increasing production of heavy oil by nitrogen dispersion in the fault block reservoir with thin layer and low permeability[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(2): 71–77.

    [20]

    ZHANG Lijun, CHENG Shiqiang, YU Haili. Analysis of pressure transient for fractured-vuggy reservoirs with coupling of pipe flow and seepage[C]. International Symposium on Multi-Field Coupling Theory of Rock and Soil Media and Its Applications, 2010: 313–317.

    [21] 张晓,李小波,荣元帅,等. 缝洞型碳酸盐岩油藏周期注水驱油机理[J]. 复杂油气藏,2017,10(2):38–42.

    ZHANG Xiao, LI Xiaobo, RONG Yuanshuai, et al. Mechanism of cyclic water flooding in fiactured-vuggy type carbonate reservoir[J]. Complex Hydrocarbon Reservoirs, 2017, 10(2): 38–42.

  • 期刊类型引用(33)

    1. 刘文堂,刘昱彤. 温度对油基钻井液黏度测定的影响因素分析. 石油石化节能与计量. 2025(01): 16-20 . 百度学术
    2. 贾永红,周双君,段利波,逄凯迪,温杰,陈琳波. 抗180℃水基钻井液随钻堵漏剂的研制及性能评价. 化工设计通讯. 2025(01): 16-19 . 百度学术
    3. 邓文彪,韩成,李文拓,魏佳,郭宇堃. 海上抗高温高密度油基钻井液技术及应用. 化学工程与装备. 2024(02): 33-36 . 百度学术
    4. 许林,王晓棠,王晓亮,胡南琪,许明标,韩银府,位中伟,丁梓敬. 超支化高分子水基钻井液仿生润滑机理. 天然气工业. 2024(07): 120-131 . 百度学术
    5. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 百度学术
    6. 王长豹,程云,马诚,杨超,钟飞升,杨国兴. 裂缝性地层油基钻井液用堵漏材料的研究进展. 当代化工. 2024(11): 2621-2627 . 百度学术
    7. 邓正强,欧猛,许桂莉,黄坤,梁睿,黄平,罗宇峰,胡嘉. 页岩气窄密度窗口地层封堵承压油基钻井液技术. 石油化工应用. 2023(03): 53-57 . 百度学术
    8. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 . 百度学术
    9. 陈建宏,汤柏松,罗伟,杜雪雷,方牧. 渤海西部海域某区块断层防漏、堵漏技术研究及应用. 天津科技. 2023(09): 28-30 . 百度学术
    10. 董云峰,韩成. 油基钻井液堵漏体系及材料研究进展. 化工设计通讯. 2023(11): 37-39 . 百度学术
    11. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 . 百度学术
    12. 孙凯,刘化伟,明鑫,乐守群. 自201井区页岩气井水平段安全高效钻井技术. 钻探工程. 2022(02): 104-109 . 百度学术
    13. 陈军,王平,李占超. 油基钻井液防漏堵漏理论与技术研究进展. 当代化工研究. 2022(12): 162-164 . 百度学术
    14. 刘政,李茂森,蒋学光. 川渝页岩气井油膨胀随钻防漏治漏技术及应用. 天然气勘探与开发. 2021(01): 118-124 . 百度学术
    15. 李伟,白英睿,李雨桐,王波,吕开河,张文哲,雷少飞. 钻井液堵漏材料研究及应用现状与堵漏技术对策. 科学技术与工程. 2021(12): 4733-4743 . 百度学术
    16. 刘瑞,于培志. 油基钻井液随钻堵漏材料的研究与应用. 辽宁化工. 2021(06): 784-787+791 . 百度学术
    17. 纪卫军,杨勇,闫永生,唐国旺. 一种油基钻井液用凝胶堵漏体系及其应用. 钻井液与完井液. 2021(02): 196-200 . 百度学术
    18. 陈亮,胡进科,耿冬,李子钰. 重庆页岩气井油基钻井液堵漏防塌新工艺探索. 油气藏评价与开发. 2021(04): 527-535 . 百度学术
    19. 陈军,陈小龙. 低成本延迟交联凝胶堵漏体系研究. 山东化工. 2020(06): 141-144+147 . 百度学术
    20. 顾雪凡,王棚,高龙,陈刚,张洁. 我国天然高分子基钻井液体系研究进展. 西安石油大学学报(自然科学版). 2020(05): 83-91 . 百度学术
    21. 刘政,李俊材,黄鸿. 准噶尔南缘油基膨胀型随钻防漏堵漏技术. 新疆石油天然气. 2020(02): 43-47+3 . 百度学术
    22. 郝海洋,屈勇,何吉标,张家瑞,刘俊君. 页岩气水平井低密度防窜水泥浆增稠机理. 天然气勘探与开发. 2020(04): 131-137 . 百度学术
    23. 代一钦. 油基钻井液条件下堵漏材料研究新进展. 江汉石油职工大学学报. 2020(06): 57-59 . 百度学术
    24. 张杜杰,金军斌,陈瑜,康毅力. 深部裂缝性致密储层随钻堵漏材料补充时机研究. 特种油气藏. 2020(06): 158-164 . 百度学术
    25. 袁青松,冯辉,张栋,李中明,代磊,董果果. 强封堵钻井液体系在河南页岩气钻井中的研究和应用. 钻井液与完井液. 2019(01): 29-35 . 百度学术
    26. 马文英,刘昱彤,钟灵,刘文堂,孙东营,毛世发. 油基钻井液封堵剂研究及应用. 断块油气田. 2019(04): 529-532 . 百度学术
    27. 宋保健,孙凯,乐守群,兰凯,明鑫. 涪陵页岩气田钻井提速难点与对策分析. 钻采工艺. 2019(04): 9-12+6 . 百度学术
    28. 刘彦学. 松南气田低密度低伤害随钻堵漏钻井液技术. 钻井液与完井液. 2019(04): 442-448 . 百度学术
    29. 曾德智,喻智明,何奇垚,刘乔平,施太和. 页岩气井环空带压安全风险定量评价方法研究. 西南石油大学学报(自然科学版). 2019(06): 146-154 . 百度学术
    30. 王武斌. JY68-2井复杂情况钻井液预防与处理技术对策. 化工管理. 2018(08): 242 . 百度学术
    31. 匡立新,刘卫东,甘新星,姜政华,陈士奎. 涪陵平桥南区块页岩气水平井钻井提速潜力分析. 石油钻探技术. 2018(04): 16-22 . 本站查看
    32. 梁文利. 深层页岩气油基钻井液承压堵漏技术. 钻井液与完井液. 2018(03): 37-41 . 百度学术
    33. 吴江,李龙,任冠龙,张崇. 海上复杂易垮塌地层高性能油基钻井液研发与应用. 钻井液与完井液. 2018(05): 55-60 . 百度学术

    其他类型引用(4)

图(4)  /  表(8)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  305
  • PDF下载量:  97
  • 被引次数: 37
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2021-07-20
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-10-17

目录

    /

    返回文章
    返回