Research on Crude Oil Thickening Mechanisms during Nitrogen Injection in Fracture-Cavity Carbonate Reservoirs
-
摘要: 为了明确缝洞型碳酸盐岩油藏注氮气原油变稠的机理并制定相应的开发对策,提高注氮气的采收率,开展了缝洞型油藏注氮气致稠机理研究。该研究通过注氮气模拟试验,分析了氮气抽提作用、氮气含氧量和伴注水对原油黏度的影响。结果表明,氮气含氧是引起原油黏度增大的主导因素,含氧量为1%时,仅需2 d多即可将氧气耗尽,黏度达到18 000 mPa·s,为初始黏度的6倍;含氧量为5%时,在7 d多时间内黏度持续升高达到1 122 000 mPa·s,为初始黏度的366倍。乳化含水和抽提对原油黏度的影响相当,黏度升高1~3倍。研究表明,提高注入氮气的纯度是防止塔河油田缝洞型油藏注氮气致稠的最有效方法,研究结果为解决缝洞型碳酸盐岩油藏注氮气原油致稠问题提供了理论依据。Abstract: Research was conducted on the thickening mechanism of crude oil during nitrogen injection in fracture-cavity reservoirs to clarify the thickening mechanism and take corresponding countermeasures, thereby enhancing the oil recovery of nitrogen injection. In this study, simulation experiments of nitrogen injection were performed to analyze the influence on crude oil brought by nitrogen extraction, oxygen content in nitrogen, and mixed water. The experiments showed that the oxygen content in nitrogen was the major influential factor. When the oxygen content was 1%, it took only more than 2 days to exhaust the oxygen, and the viscosity reached 18 000 mPa·s, which was 6 times the initial viscosity. When the oxygen content increased to 5%, the viscosity continued to grow to 1 122 000 mPa·s within more than 7 days, which was 366 times the initial viscosity. Emulsification with water and nitrogen extraction resulted in the same effect on viscosity: the viscosity increased 1–3 times. The results demonstrate improving the purity of injected nitrogen is the most effective way to prevent crude oil thickening of fracture-cavity reservoirs during nitrogen injection in Tahe Oilfield. It has provided a theoretical basis for solving the problem of crude oil thickening brought by nitrogen injection in fracture-cavity carbonate reservoirs.
-
-
表 1 试验用原油初始黏度
Table 1 Initial viscosity of crude oil in the experiment
油样 组分含量,% 重均相对
分子质量黏度/(mPa·s) 饱和 芳香 胶质 沥青质 50 ℃ 130 ℃ 油样A 27.35 32.28 24.10 16.28 1 081 4 570 68.6 油样B 29.13 31.18 27.75 11.94 1 081 3 540 62.5 油样C 30.81 31.22 17.38 20.59 1 064 370 20.4 油样D 32.31 31.13 18.58 18.01 1 087 961 37.1 表 2 不同油样对抽提效果的影响
Table 2 Influence of different oil samples on extraction
油样 质量/
g注入速度/
(L·min–1)注入量/
L抽提量/
g质量占比,% 油样A 72.70 2.96 221.74 0.12 0.17 油样B 75.70 3.00 230.88 0.12 0.16 油样C 109.10 2.97 332.76 0.12 0.11 油样D 83.19 2.99 253.73 0.07 0.08 表 3 氮气注入倍数对油样A抽提效果的影响
Table 3 Influence of nitrogen injection multiples on extraction in Sample A
油样质
量/g注入速度/
(L·min–1)注入倍数 抽提量/
g质量
比,%50 ℃黏度/
(mPa·s)增黏
倍数72.95 2.90 3 0.05 0.07 5 026 1.10 99.63 2.98 5 0.11 0.11 5 519 1.21 72.70 2.96 10 0.12 0.17 6 701 1.47 63.35 2.97 30 0.27 0.43 14 933 3.27 表 4 注入速度对原油抽提效果的影响
Table 4 Influence of nitrogen injection rates on extraction
油样质量/g 注入速度/(L·min−1) 注入量/L 抽提量/g 63.35 2.97 579.65 0.27 63.35 3.49 579.65 0.25 63.35 4.07 579.65 0.24 表 5 油样E在不同含氧量氮气中氧化不同时间后的黏度
Table 5 Viscosity of Sample E after oxidization for different time in nitrogen with different oxygen contents
含氧量,% 油样E氧化不同时间后的黏度/(mPa·s) 6 h 12 h 30 h 54 h 78 h 126 h 174 h 1 10 020 12 600 15 480 17 750 18 200 18 300 18 000 5 12 500 35 330 62 000 98 400 228 000 453 000 1 122 000 15 55 630 384 000 9 360 000 32 750 000 表 6 油样E经不同含氧量氮气氧化前后C,H 和 N 元素含量的变化
Table 6 Change of contents of Element C, H and N in Sample E before and after oxidization by nitrogen with different oxygen contents
油样 H,% C,% N,% S,% O,% 油样E 11.95 85.13 0.51 1.80 0.61 含氧量1%氮气抽提3次 11.80 84.99 0.51 1.84 0.86 含氧量1%氮气抽提7次 11.78 84.94 0.51 1.86 0.91 含氧量5%氮气抽提3次 11.66 84.71 0.51 1.89 1.23 含氧量5%氮气抽提7次 11.49 84.36 0.49 1.86 1.85 表 7 TK1原油乳化含水样品黏度
Table 7 Viscosity of emulsified water-bearing samples from Well TK1
原油乳化含水率,% 真实含水率,% 50 ℃原油黏度/(mPa·s) 原始样 5.51 385 10 9.82 575 20 14.35 1 420 30 27.41 4 337 45 44.38 22 590 60 56.06 273 000 70 62.55 449 000 75 67.34 212 000 表 8 TK2原油乳化含水样品黏度
Table 8 Viscosity of emulsified water-bearing samples from Well TK2
原油乳化含水率,% 真实含水率,% 50 ℃原油黏度/(mPa·s) 原始样 4.65 1 880 10 9.16 2 480 20 20.8 7 500 30 33.45 13 200 40 40.1 22 800 55 53.0 44 000 65 63.5 109 000 70 67.2 78 800 -
[1] 杨景斌,侯吉瑞. 缝洞型碳酸盐岩油藏岩溶储集体注氮气提高采收率实验[J]. 油气地质与采收率,2019,26(6):107–114. YANG Jingbin, HOU Jirui. Experiments on enhancing oil recovery by nitrogen injection in fracture-vuggy carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 107–114.
[2] 关华,郭平,赵春兰,等. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏,2020,32(2):149–160. GUAN Hua, GUO Ping, ZHAO Chunlan, et al. Nitrogen flooding mechanism in Yong66 Block of Yong’an Oilfield, Bohai Bay Basin[J]. Lithologic Reservoirs, 2020, 32(2): 149–160.
[3] 姜海涛. 救援井与事故井连通技术研究[D]. 北京: 中国石油大学(北京), 2014. JIANG Haitao. Study on the Technology of Intercommunicating the relief well and the accident well[D].Beijing: China University of Petroleum(Beijing), 2014
[4] WANG Leizheng, YU Wei. Gas huff and puff process in Eagle Ford Shale: recovery mechanism study and optimization[R]. SPE 195185, 2019.
[5] 刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术,2019,47(4):75–82. doi: 10.11911/syztjs.2019092 LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical differential velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82. doi: 10.11911/syztjs.2019092
[6] 刘笑春,黎晓茸,杨飞涛,等. 长庆姬塬油田黄3区CO2驱对采出原油物性影响[J]. 油气藏评价与开发,2019,9(3):36–40. doi: 10.3969/j.issn.2095-1426.2019.03.007 LIU Xiaochun, LI Xiaoxiang, YANG Feitao, et al. Effect of CO2 flooding on physical properties of produced crude oil in Huang 3 Block of Jiyuan Oilfield, Changqing[J]. Oil and Gas Reservoir Evaluation and Development, 2019, 9(3): 36–40. doi: 10.3969/j.issn.2095-1426.2019.03.007
[7] YU Wei, LASHGARI H R, SEPEHRNOORI K. Simulation study of CO2 huff-n-puff process in Bakken tight oil reservoirs[R]. SPE 169575, 2014.
[8] 唐人选,梁珀,吴公益,等. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术,2020,48(1):98–103. doi: 10.11911/syztjs.2019125 TANG Renxuan, LIANG Po, WU Gongyi, et al. Analyzing and understanding the influencing factors of CO2 flooding in the Subei complex fault block reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125
[9] 侯剑锋,刘鹏刚,曹廷义. 轻质原油注空气热特征及氧化动力学研究[J]. 油气藏评价与开发,2020,10(4):113–118. HOU Jianfeng, LIU Penggang, CAO Tingyi. Study on thermal characteristics and oxidation kinetics of light crude oil by air injec-tion[J]. Oil and Gas Reservoir Evaluation and Development, 2020, 10(4): 113–118.
[10] 龙安林,张茂林,宋惠馨,等. 减氧空气驱低温氧化反应机理研究:以尕斯库勒油田E31油藏为例[J]. 能源与环保,2020,42(4):105–109. LONG Anlin, ZHANG Maolin, SONG Huixin, et al. Study on mechanism of low temperature oxidation reaction of deoxidized air drive: taking E31 reservoir of Gaskule Oilfield as an example[J]. Energy and Environmental Protection, 2020, 42(4): 105–109.
[11] 廖广志,王红庄,王正茂,等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发,2020,47(2):334–340. LIAO Guangzhi, WANG Hongzhuang, WANG Zhengmao, et al. Characteristics and development methods of crude oil oxidation reaction in the whole temperature range of air injection[J]. Petroleum Exploration and Development, 2020, 47(2): 334–340.
[12] 张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018. ZHANG Diping. Research on location method of underground electromagnetic positioning[D]. Chengdu: University of Electronic Science and Technology of China, 2018
[13] MONTES A R, GUTIERREZ D, MOORE R G, et al. Is high pressure air injection (HPAI) simply a flue-gas flood?[R]. SPE 133206, 2010.
[14] REN S R, GREAVES M, RATHBONE R R. Air injection LTO process: an IOR technique for light-oil reservoirs[J]. Society of Petroleum Engineers Journal, 2002, 7(1): 90–99.
[15] CLARA C, DURANDEAU M, QUENAULT G, et al. Laboratory studies for light oil air injection projects: potential application in Handil Field[J]. SPE Reservoir Evaluation&Engineering, 2000, 3(3): 239–248.
[16] 王伟伟. 压力对轻质原油氧化动力学参数的影响[J]. 断块油气田,2020,27(1):109–112. WANG Weiwei. Influence of pressure on oxidation kinetic parameters of light crude oil[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 109–112.
[17] 李一波,蒲万芬,王爱香,等. 轻质油藏注空气低温高压氧化实验研究[J]. 石油钻采工艺,2012,34(6):90–92. doi: 10.3969/j.issn.1000-7393.2012.06.026 LI Yibo, PU Wanfen, WANG Aixiang, et al. Experimental study on low temperature high pressure oxidation in air injection in light oil reservoir[J]. Oil Drilling & Production Technology, 2012, 34(6): 90–92. doi: 10.3969/j.issn.1000-7393.2012.06.026
[18] 文江波,罗海军,柯兰茜,等. 流动剪切对原油乳化含水率的影响及基于焓的定量表征[J]. 科学技术与工程,2019,19(11):104–107. WEN Jiangbo, LUO Haijun, KE Lanxi, et al. Effect of flow shear on water content of crude oil emulsion and quantitative characterization based on enthalpy[J]. Science Technology and Engineering, 2019, 19(11): 104–107.
[19] 黄咏梅,赵宏伟,盖云飞. 薄层低渗透断块稠油氮气分散降黏增产技术研究与应用[J]. 长江大学学报(自然科学版),2020,17(2):71–77. HUANG Yongmei, ZHAO Hongwei, GAI Yunfei. Research and application of technology of reducing viscosity and increasing production of heavy oil by nitrogen dispersion in the fault block reservoir with thin layer and low permeability[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(2): 71–77.
[20] ZHANG Lijun, CHENG Shiqiang, YU Haili. Analysis of pressure transient for fractured-vuggy reservoirs with coupling of pipe flow and seepage[C]. International Symposium on Multi-Field Coupling Theory of Rock and Soil Media and Its Applications, 2010: 313–317.
[21] 张晓,李小波,荣元帅,等. 缝洞型碳酸盐岩油藏周期注水驱油机理[J]. 复杂油气藏,2017,10(2):38–42. ZHANG Xiao, LI Xiaobo, RONG Yuanshuai, et al. Mechanism of cyclic water flooding in fiactured-vuggy type carbonate reservoir[J]. Complex Hydrocarbon Reservoirs, 2017, 10(2): 38–42.
-
期刊类型引用(33)
1. 刘文堂,刘昱彤. 温度对油基钻井液黏度测定的影响因素分析. 石油石化节能与计量. 2025(01): 16-20 . 百度学术
2. 贾永红,周双君,段利波,逄凯迪,温杰,陈琳波. 抗180℃水基钻井液随钻堵漏剂的研制及性能评价. 化工设计通讯. 2025(01): 16-19 . 百度学术
3. 邓文彪,韩成,李文拓,魏佳,郭宇堃. 海上抗高温高密度油基钻井液技术及应用. 化学工程与装备. 2024(02): 33-36 . 百度学术
4. 许林,王晓棠,王晓亮,胡南琪,许明标,韩银府,位中伟,丁梓敬. 超支化高分子水基钻井液仿生润滑机理. 天然气工业. 2024(07): 120-131 . 百度学术
5. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 百度学术
6. 王长豹,程云,马诚,杨超,钟飞升,杨国兴. 裂缝性地层油基钻井液用堵漏材料的研究进展. 当代化工. 2024(11): 2621-2627 . 百度学术
7. 邓正强,欧猛,许桂莉,黄坤,梁睿,黄平,罗宇峰,胡嘉. 页岩气窄密度窗口地层封堵承压油基钻井液技术. 石油化工应用. 2023(03): 53-57 . 百度学术
8. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 . 百度学术
9. 陈建宏,汤柏松,罗伟,杜雪雷,方牧. 渤海西部海域某区块断层防漏、堵漏技术研究及应用. 天津科技. 2023(09): 28-30 . 百度学术
10. 董云峰,韩成. 油基钻井液堵漏体系及材料研究进展. 化工设计通讯. 2023(11): 37-39 . 百度学术
11. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 . 百度学术
12. 孙凯,刘化伟,明鑫,乐守群. 自201井区页岩气井水平段安全高效钻井技术. 钻探工程. 2022(02): 104-109 . 百度学术
13. 陈军,王平,李占超. 油基钻井液防漏堵漏理论与技术研究进展. 当代化工研究. 2022(12): 162-164 . 百度学术
14. 刘政,李茂森,蒋学光. 川渝页岩气井油膨胀随钻防漏治漏技术及应用. 天然气勘探与开发. 2021(01): 118-124 . 百度学术
15. 李伟,白英睿,李雨桐,王波,吕开河,张文哲,雷少飞. 钻井液堵漏材料研究及应用现状与堵漏技术对策. 科学技术与工程. 2021(12): 4733-4743 . 百度学术
16. 刘瑞,于培志. 油基钻井液随钻堵漏材料的研究与应用. 辽宁化工. 2021(06): 784-787+791 . 百度学术
17. 纪卫军,杨勇,闫永生,唐国旺. 一种油基钻井液用凝胶堵漏体系及其应用. 钻井液与完井液. 2021(02): 196-200 . 百度学术
18. 陈亮,胡进科,耿冬,李子钰. 重庆页岩气井油基钻井液堵漏防塌新工艺探索. 油气藏评价与开发. 2021(04): 527-535 . 百度学术
19. 陈军,陈小龙. 低成本延迟交联凝胶堵漏体系研究. 山东化工. 2020(06): 141-144+147 . 百度学术
20. 顾雪凡,王棚,高龙,陈刚,张洁. 我国天然高分子基钻井液体系研究进展. 西安石油大学学报(自然科学版). 2020(05): 83-91 . 百度学术
21. 刘政,李俊材,黄鸿. 准噶尔南缘油基膨胀型随钻防漏堵漏技术. 新疆石油天然气. 2020(02): 43-47+3 . 百度学术
22. 郝海洋,屈勇,何吉标,张家瑞,刘俊君. 页岩气水平井低密度防窜水泥浆增稠机理. 天然气勘探与开发. 2020(04): 131-137 . 百度学术
23. 代一钦. 油基钻井液条件下堵漏材料研究新进展. 江汉石油职工大学学报. 2020(06): 57-59 . 百度学术
24. 张杜杰,金军斌,陈瑜,康毅力. 深部裂缝性致密储层随钻堵漏材料补充时机研究. 特种油气藏. 2020(06): 158-164 . 百度学术
25. 袁青松,冯辉,张栋,李中明,代磊,董果果. 强封堵钻井液体系在河南页岩气钻井中的研究和应用. 钻井液与完井液. 2019(01): 29-35 . 百度学术
26. 马文英,刘昱彤,钟灵,刘文堂,孙东营,毛世发. 油基钻井液封堵剂研究及应用. 断块油气田. 2019(04): 529-532 . 百度学术
27. 宋保健,孙凯,乐守群,兰凯,明鑫. 涪陵页岩气田钻井提速难点与对策分析. 钻采工艺. 2019(04): 9-12+6 . 百度学术
28. 刘彦学. 松南气田低密度低伤害随钻堵漏钻井液技术. 钻井液与完井液. 2019(04): 442-448 . 百度学术
29. 曾德智,喻智明,何奇垚,刘乔平,施太和. 页岩气井环空带压安全风险定量评价方法研究. 西南石油大学学报(自然科学版). 2019(06): 146-154 . 百度学术
30. 王武斌. JY68-2井复杂情况钻井液预防与处理技术对策. 化工管理. 2018(08): 242 . 百度学术
31. 匡立新,刘卫东,甘新星,姜政华,陈士奎. 涪陵平桥南区块页岩气水平井钻井提速潜力分析. 石油钻探技术. 2018(04): 16-22 . 本站查看
32. 梁文利. 深层页岩气油基钻井液承压堵漏技术. 钻井液与完井液. 2018(03): 37-41 . 百度学术
33. 吴江,李龙,任冠龙,张崇. 海上复杂易垮塌地层高性能油基钻井液研发与应用. 钻井液与完井液. 2018(05): 55-60 . 百度学术
其他类型引用(4)