巨厚砾石层气体钻井井筒不规则性对井斜的影响研究

娄尔标, 周波, 刘洪涛, 陈锋, 王文昌, 薛艳鹏

娄尔标, 周波, 刘洪涛, 陈锋, 王文昌, 薛艳鹏. 巨厚砾石层气体钻井井筒不规则性对井斜的影响研究[J]. 石油钻探技术, 2021, 49(3): 62-66. DOI: 10.11911/syztjs.2021003
引用本文: 娄尔标, 周波, 刘洪涛, 陈锋, 王文昌, 薛艳鹏. 巨厚砾石层气体钻井井筒不规则性对井斜的影响研究[J]. 石油钻探技术, 2021, 49(3): 62-66. DOI: 10.11911/syztjs.2021003
LOU Erbiao, ZHOU Bo, LIU Hongtao, CHEN Feng, WANG Wenchang, XUE Yanpeng. Effect of Irregular Wellbores on Well Deviation in Air Drilling Through Thick Conglomerate Formations[J]. Petroleum Drilling Techniques, 2021, 49(3): 62-66. DOI: 10.11911/syztjs.2021003
Citation: LOU Erbiao, ZHOU Bo, LIU Hongtao, CHEN Feng, WANG Wenchang, XUE Yanpeng. Effect of Irregular Wellbores on Well Deviation in Air Drilling Through Thick Conglomerate Formations[J]. Petroleum Drilling Techniques, 2021, 49(3): 62-66. DOI: 10.11911/syztjs.2021003

巨厚砾石层气体钻井井筒不规则性对井斜的影响研究

基金项目: 国家科技重大专项“深井超深井钻井工程设计系统在塔里木油田现场的应用”(编号:2016ZX05020-006),国家自然科学基金项目“超深井钻柱非线性动力学及动态安全性基础理论研究”(编号:U1663205)、“气体钻井中预弯底部钻具组合控斜的非线性动力学机制”(编号:51704191)和“超深井油套管螺纹接头三维力学特性分析及密封机理研究”(编号:51804194),以及中国石油塔里木油田分公司科技项目“山前超深复杂井钻井技术攻关与应用”(编号:201017050104)资助
详细信息
    作者简介:

    娄尔标(1986—),男,安徽宿州人,2010年毕业于中国石油大学(华东)石油工程专业,2013年获中国石油大学(华东)油气井工程专业硕士学位,工程师,主要从事钻井工程钻杆、套管柱等管柱力学校核设计工作。E-mail:lebgreen@163.com。

  • 中图分类号: TE242

Effect of Irregular Wellbores on Well Deviation in Air Drilling Through Thick Conglomerate Formations

  • 摘要: 直井易斜和下套管困难是巨厚砾石层气体钻井存在的2个亟需解决的问题。现场测试数据表明,即使使用普遍认为具有较好控斜效果的空气锤钻井技术,井斜控制依然困难,且井筒的规则性很差,这很难用现有的控斜理论解释。现有底部钻具组合(BHA)受力模型均未考虑井筒的不规则性,都假设井筒光滑规则。为此,基于现场实测数据,利用有限元方法建立了BHA与不规则井筒相互作用的力学模型,分析了井筒不规则性对BHA受力特征的影响。模型分析表明,不规则井筒易形成附加支点,缩短有效钟摆长度,使降斜力大幅减小,甚至可能使钻头侧向力成为增斜力,造成井斜控制失败。实例分析证实,巨厚砾石层采用气体钻井时,预弯钟摆BHA所钻井筒相对较为规则,控斜效果好,下套管作业顺利。现场实测数据间接证明了井筒不规则性对井斜存在重要影响,BHA力学分析时应考虑井筒的不规则性。
    Abstract: Proneness to well deviation and difficulty in casing running are two bottlenecks to be solved urgently in air drilling through the thick conglomerate formation. Field test data revealed that well deviation control was still challenging even air hammer drilling with a marked control effect on deviation was adopted, and wellbore regularity was poor. This phenomenon is difficult to explain with present theories of deviation control. Existing bottom hole assembly (BHA) force models do not consider the irregularity of the wellbore, and assume that the wellbore is smooth and regular. In this paper, the mechanical model of interaction between the irregular wellbore and BHA was built with finite element method on the basis of field data, and the influence of wellbore irregularity on the mechanical characteristics of BHA was analyzed. The model results demonstrate that the irregular wellbore is easy to form additional fulcrum and shorten the swing distance of pendulum BHA, thus greatly reducing deviation-reducing force. It may even convert the lateral force on the drill bit into a deviation-increasing force, resulting in well deviation control failure. It is confirmed by case analysis that the wellbore drilled by the pre-bent pendulum BHA is regular in air drilling through the thick conglomerate formation, with effective well deviation control and smooth running of casing. Field data indirectly supports the significant impact of wellbore irregularity on well deviation, which should be considered in the BHA mechanical analysis.
  • 图  1   BHA与不规则井筒相互作用物理模型

    Figure  1.   Physical model of interaction between the BHA and the irregular wellbore

    图  2   钻柱井壁摩擦接触模型

    Figure  2.   Frictional contact model between the drill string and the sidewall

    图  3   BHA与井筒相互作用有限元计算模型

    Figure  3.   Finite element model of interaction between the BHA and the wellbore

    图  4   不同工况下的钻头侧向力矢量图

    Figure  4.   Vector diagram of lateral force on the bit in different cases

    图  5   某井钻进砾岩地层时井斜角随井深的变化情况

    Figure  5.   Variation of the deviation angle with well depth during drilling of a well in the conglomerate formation

    图  6   不同井段的井筒特征

    Figure  6.   Wellbore characteristics in different well sections

    表  1   钻头对井筒的作用力

    Table  1   Force of the bit on the wellbore

    工况x方向作用力/Ny方向作用力/Nz方向作用力/N
    1–1 708.50–17.80–150.50
    2–998.30–3.30–87.70
    3–0.100.010.01
    47 435.7056.30595.50
    下载: 导出CSV
  • [1] 肖洲,吴俊,颜小兵,等. 气体钻井技术的发展趋势与新技术探讨[J]. 钻采工艺,2014,37(5):5–7. doi: 10.3969/J.ISSN.1006-768X.2014.05.02

    XIAO Zhou, WU Jun, YAN Xiaobing, et al. Development trend of gas drilling and discussion on new gas drilling techniques[J]. Drilling & Production Technology, 2014, 37(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2014.05.02

    [2] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术,2019,47(6):9–14. doi: 10.11911/syztjs.2019118

    LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118

    [3] 叶金龙,沈建文,吴玉君,等. 川深1井超深井钻井提速关键技术[J]. 石油钻探技术,2019,47(3):121–126. doi: 10.11911/syztjs.2019056

    YE Jinlong, SHEN Jianwen, WU Yujun, et al. Key techniques of drilling penetration rate improvement in ultra-deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121–126. doi: 10.11911/syztjs.2019056

    [4] 杜劲,尹松,闫伟,等. 国内外井斜控制技术的发展[J]. 机械工程师,2007(2):22–24. doi: 10.3969/j.issn.1002-2333.2007.02.013

    DU Jin, YIN Song, YAN Wei, et al. The development of well deviation technique at home and abroad[J]. Mechanical Engineer, 2007(2): 22–24. doi: 10.3969/j.issn.1002-2333.2007.02.013

    [5] 张辉,高德利,段明星. 气体钻井井斜机理研究[J]. 石油天然气学报,2012,34(2):103–105, 109. doi: 10.3969/j.issn.1000-9752.2012.02.022

    ZHANG Hui, GAO Deli, DUAN Mingxing. Research on the mechanism of hole deviation in gas drilling[J]. Journal of Oil and Gas Technology, 2012, 34(2): 103–105, 109. doi: 10.3969/j.issn.1000-9752.2012.02.022

    [6] 刘彪,杨明合,钟文健,等. 空气钻井井斜因素分析及工艺应用[J]. 断块油气田,2009,16(2):120–123.

    LIU Biao, YANG Minghe, ZHONG Wenjian, et al. Factors of affecting borehole deviation for air drilling and the technical application[J]. Fault-Block Oil & Gas Field, 2009, 16(2): 120–123.

    [7] 邓柯,刘殿琛,李宬晓. 预弯曲动力学井斜控制技术在长宁构造气体钻井中的应用[J]. 钻采工艺,2020,43(2):38–40.

    DENG Ke, LIU Dianchen, LI Chengxiao. Application of pre-bending dynamic well inclination control technology in gas drilling in Changning Structure[J]. Drilling & Production Technology, 2020, 43(2): 38–40.

    [8] 狄勤丰,胡菲菲,周波,等. 气体钻井预弯曲钟摆钻具控斜的动力学行为[J]. 天然气工业,2019,39(7):94–98. doi: 10.3787/j.issn.1000-0976.2019.07.012

    DI Qinfeng, HU Feifei, ZHOU Bo, et al. Dynamic behaviors of deviation control of the prebent pendulum BHA in gas drilling[J]. Natural Gas Industry, 2019, 39(7): 94–98. doi: 10.3787/j.issn.1000-0976.2019.07.012

    [9] 曾桂元,代锋,荆华,等. 元坝地区气体钻井井斜控制技术与应用[J]. 钻采工艺,2015,38(1):29–31. doi: 10.3969/J.ISSN.1006-768X.2015.01.08

    ZENG Guiyuan, DAI Feng, JING Hua, et al. Measures of borehole deviation control during gas drilling in Yuanba Area[J]. Drilling & Production Technology, 2015, 38(1): 29–31. doi: 10.3969/J.ISSN.1006-768X.2015.01.08

    [10]

    GAO Deli, ZHENG Deshuai. Study of a mechanism for well deviation in air drilling and its control[J]. Petroleum Science & Technology, 2011, 29(4): 358–365.

    [11]

    ZHAO Zengxin, GAO Deli, ZHENG Deshuai. Mechanism of well deviation in air drilling and its control[R]. SPE 130201, 2010.

    [12]

    ZHANG He, DI Qinfeng, WANG Wenchang, et al. Lateral vibration analysis of pre-bent pendulum bottomhole assembly used in air drilling[J]. Journal of Vibration and Control, 2018, 24(22): 5213–5224. doi: 10.1177/1077546317747778

    [13] 狄勤丰,王春生,李宁,等. 巨厚砾岩层气体钻井井眼特征[J]. 石油学报,2015,36(3):372–377. doi: 10.7623/syxb201503013

    DI Qinfeng, WANG Chunsheng, LI Ning, et al. Wellbore characteristic of gas drilling in thicker conglomerate[J]. Acta Petrolei Sinica, 2015, 36(3): 372–377. doi: 10.7623/syxb201503013

    [14] 张鹤,狄勤丰,覃光煦,等. 预弯底部钻具组合横向振动响应的快速求解[J]. 石油学报,2017,38(12):1441–1447. doi: 10.7623/syxb201712012

    ZHANG He, DI Qinfeng, QIN Guangxu, et al. Quick solution method for lateral vibration response of pre-bent bottom hole assembly[J]. Acta Petrolei Sinica, 2017, 38(12): 1441–1447. doi: 10.7623/syxb201712012

    [15]

    KAMEL J M, YIGIT A S. Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits[J]. Journal of Sound and Vibration, 2014, 333(25): 6885–6899. doi: 10.1016/j.jsv.2014.08.001

    [16]

    HUU T N. Study on dynamic stability of drilling string for improved bottom hole assembly and operating drilling parameters to drill wells in the basement[R]. IADC/SPE 180501, 2016.

    [17]

    LIU Yongsheng, GAO Deli. A nonlinear dynamic model for characterizing downhole motions of drill-string in a deviated well[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 466–474. doi: 10.1016/j.jngse.2017.01.006

    [18] 张洪武, 关振群, 李云鹏, 等. 有限元分析与CAE技术基础[M]. 北京: 清华大学出版社, 2004: 54-55.

    ZHANG Hongwu, GUAN Zhenqun, LI Yunpeng, et al. Finite element analysis and CAE technology foundation[M]. Beijing: Tsinghua University Press, 2004: 54-55.

  • 期刊类型引用(6)

    1. 李朋,张艳玉,孙晓飞,李冬冬,刘洋,陈会娟. SAGD循环预热割缝筛管参数影响规律研究. 工程热物理学报. 2020(04): 940-947 . 百度学术
    2. 薛衡,黄祖熹,王贺华,安永生,刘榧,成一,何冰,刘卡. Ahdeb油田水平井控水完井及一体化耦合模型. 石油与天然气地质. 2019(02): 423-429 . 百度学术
    3. 李朋,张艳玉,孙晓飞,陈会娟,刘洋. 稠油油藏双管水平井注汽井筒参数预测新模型. 特种油气藏. 2019(04): 85-90 . 百度学术
    4. 李朋,张艳玉,孙晓飞,刘洋,谢孟珂,王朝,陈会娟. SAGD循环预热注汽参数影响规律数值模拟. 中南大学学报(自然科学版). 2019(11): 2896-2905 . 百度学术
    5. 陈会娟,李明忠,狄勤丰,刘春苗. 多点注汽水平井井筒出流规律数值模拟. 石油学报. 2017(06): 696-704 . 百度学术
    6. 徐磊. 稠油热采井防砂筛管热稳定性优化仿真分析. 北京石油化工学院学报. 2016(02): 40-45 . 百度学术

    其他类型引用(5)

图(6)  /  表(1)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  215
  • PDF下载量:  95
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-03-28
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回