New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies
-
摘要: “十三五”以来,中国石化针对深层特深层油气、致密气和非常规油气高效勘探开发中的关键技术难题,持续加大科技攻关力度,突破了一批制约油气勘探开发的技术瓶颈,研发了一批高端技术装备、井下工具仪器和作业流体,形成了优快钻井完井、高温高精度测控、精细录井和高效储层改造等技术系列,促进了顺北油气田、涪陵页岩气田的高效勘探与效益开发, 为老油田和致密气田增储稳产提供了强有力的技术保障。但是,目前中国石化石油工程技术装备在作业效率、技术指标、综合成本等方面与国外先进水平相比还存在较大差距,因此在“十四五”期间,必须大力实施创新驱动战略,大力提升自主创新能力,突破钻井完井、测录井及储层改造等专业的关键核心技术,尽快提升石油工程技术装备水平,为中国石化稳油增气降本提供技术支撑。Abstract: During the 13th Five-Year Plan period, Sinopec has been continuously stepping up its scientific and technological efforts in view of the key technical problems in the efficient exploration and development of deep and ultra-deep oil and gas, tight low permeability oil and gas, and unconventional oil and gas. A number of technical bottlenecks restricting oil and gas exploration and development have been broken through; a batch of high-end technical equipment, downhole tools, instruments and fluids have been developed; a series of technologies have been formed including optimal fast drilling and completion, measurement and control under high temperature condition with high precision, fine logging and efficient reservoir stimulation. All promoted the efficient exploration and beneficial development of Shunbei ultra-deep oil and gas field and Fuling shale gas field, providing a strong technical support for increasing storage and stabilizing production in old oil fields and tight low permeability oil and gas fields. However, gaps still remain between the petroleum engineering technologies of Sinopec and foreign advanced technologies in the aspects of operation efficiency, technical index and comprehensive cost, etc. Thus, to provide Sinopec technical supports for stabilizing oil production, improving gas production and reducing cost, we must vigorously implement the innovation-driven strategy; largely enhance the ability of independent innovation; make breakthroughs in drilling and completion, logging and reservoir stimulation and other professional key core technologies; and improve the level of petroleum engineering technology and equipment as soon as possible during the 14th Five-Year Plan period.
-
我国页岩油资源丰富,储量超过700×108 t,准噶尔盆地、松辽盆地、渤海湾和鄂尔多斯盆地等多个区域均发现页岩油,部分地区初具开发规模[1-3]。松辽盆地北部大庆古龙页岩油为典型的陆相页岩油,主要目的层分布范围广、厚度大,岩性以层状页岩、纹层状页岩和泥岩为主。大庆油田已在古龙区块完成3口页岩油预探水平井,完钻井深2 135~4 230 m,水平段长1 630~2 220 m,钻井过程中存在井壁不稳定、井眼缩径、钻进摩阻大和定向困难等问题,导致钻井周期长、机械钻速低,全井平均机械钻速仅12.38 m/h[4-6]。国外采用LWD+螺杆定向、旋转导向、水力振荡器和高效PDC钻头等工具和采取优化钻井参数等措施,以提高页岩油钻井速度;国内川渝地区、渤海湾和新疆玛湖地区等页岩油气开发的重点区域,采用高造斜旋转导向系统、水力振荡器和高效PDC钻头等方法提高钻井速度[7-8]。
笔者根据现场实钻经验及现有技术水平,对井身结构、井眼轨道进行优化,以降低施工难度;针对二开直井段缩径、三开造斜段和水平段钻井周期长等问题,研究了井壁修整工具、旋冲螺杆钻井工具、清砂接头和水力振荡器等工具,并进行了钻井参数优化,形成了大庆页岩油水平井钻井提速技术,现场应用效果较好,为大庆油田采用水平井高效开发页岩油提供了技术支撑。
1. 页岩油地层特点及钻井难点
大庆油田页岩油储层岩性以富含有机质的泥岩、页岩为主,黏土矿物含量高,且多孔多缝,呈纹层状结构,地层水敏性强,易发生层间散裂。目的层上部为泥岩、粉砂质泥岩互层,中下部为灰黑、灰绿、紫红色泥岩、粉砂质泥岩互层,存在长泥岩段,钻进时易出现缩径、泥包钻头和卡钻等复杂情况。泥岩遇水膨胀导致缩径,影响钻井时效,增大井下遇阻卡钻事故风险;造斜段采用三维井眼轨道,造斜率难保证,入靶精准度低,并且施工困难;水平井水平段长,岩屑易堆积形成岩屑床,导致钻进过程中摩阻扭矩大,最大摩阻超过343 kN,最大扭矩24.5 kN·m,严重影响了水平段钻井速度。分析认为,大庆页岩油地层钻井提速主要存在以下技术难点:
1)大庆页岩油水平井上部地层存在流砂层和大段泥岩,特别是目的层上部地层水化膨胀,易引起井眼缩径,导致起下钻阻卡、测井和固井前需多次反复通井,影响钻井时效;页岩储层黏土矿物含量高,井壁易剥落形成岩屑床,导致卡钻、遇阻和憋泵故障频发,已施工的3口页岩油水平井均存在不同程度的井壁剥落或坍塌、频繁憋泵和卡钻等问题。
2)大庆油田页岩油开发以丛式井为主,一般设计为大位移三维井眼轨道,在增斜的同时要扭方位,与常规二维井眼轨道相比,钻进摩阻增加40%以上;长水平段三维水平井因位垂比大、裸眼段长,消除偏移距后易形成井眼拐点,造成井眼轨迹控制难度大[9-13]。已钻井采用三维井眼轨道,造斜段钻进过程中滑动摩阻扭矩急剧增大,定向工具和钻头作用力方向易偏离设计轨道,工具面不稳,滑动钻进比例高,严重影响机械钻速。
3)页岩油水平井水平段长,岩屑不易返出,在钻柱低边堆积形成岩屑床,钻进后期钻柱与井壁之间摩阻扭矩大,钻头难以有效传递钻压,钻具极易发生弯曲,导致钻具疲劳损坏;滑动钻进时托压严重,工具面失稳,机械钻速低。已施工3口水平井水平段的平均机械钻速为8.05 m/h,与全井平均机械钻速(12.38 m/h)相差较大。
2. 钻井提速关键技术
针对页岩油水平井钻井存在的井壁不稳定、井眼轨迹控制困难和钻进摩阻大等问题,提出了提高钻井速度、减少井下故障的技术思路,开展了井身结构、井眼轨道和钻井参数优化及钻井提速配套工具研究,形成了大庆油田页岩油水平井钻井提速技术,达到了提高单趟钻进尺、减少井下故障、提高机械钻速和提高“一趟钻”成功率的目的。
2.1 井身结构优化
原井身结构采用3层套管结构,二开钻至造斜点下技术套管,三开钻进造斜段和水平段,技术套管下深2 000 m左右,三开下部地层井壁失稳,影响了三开造斜段和水平段钻井安全和效率。根据大庆页岩油地质特性及后期压裂施工工艺,依据钻井安全、提高钻井效率的原则,对井身结构进行了优化:一开,采用ϕ444.5 mm钻头钻进,下入ϕ339.7 mm表层套管,水泥返至地面,封隔浅部水层;二开,采用ϕ311.1 mm钻头钻进,下入ϕ244.5 mm技术套管,水泥返至地面,封隔目的层以上大段易垮塌泥页岩层,为三开水平段钻进提供安全施工环境;三开,采用ϕ215.9 mm钻头钻进,下入ϕ139.7 mm油层套管,水泥返至地面,为后期压裂提供安全保障。
2.2 井眼轨道设计优化
在实现地质设计目的的前提下,充分考虑地质特征、井眼轨迹控制技术、钻进摩阻扭矩及钻井参数等因素,优化井眼轨道,以降低施工难度。已钻井采用三维井眼轨道,由于二开为直井段,三开造斜段需要同时进行增斜和扭方位,导致滑动钻进比例高、井眼轨道不平滑、钻进摩阻增大和机械钻速低。针对以上问题,优化井眼轨道,依据造斜率小于6.5°/30 m的原则,在实现地质目的的前提下,兼顾降低施工难度,合理上移造斜点,二开就进行造斜施工,以降低造斜率,提高井眼平滑度。在保证水平段长度的前提下,将三维井眼轨道优化为双二维井眼轨道,上部二维井段完成偏移距,下部井段按照常规二维水平井施工,实现三维变二维。采用双二维井眼轨道井眼轨迹更平滑,井眼曲率最高降低20%,复合钻比例提高25%,钻进摩阻、扭矩更小,造斜段和水平段机械钻速显著提高。
2.3 钻井提速工具研究
2.3.1 井壁修整工具
页岩油水平井二开上部姚家组等地层易缩径,导致ϕ311.1 mm井眼起下钻阻卡,测井固井前需多次往复通井,严重影响钻井周期。为解决此问题,研制了随钻井壁修整工具(见图1)。该工具设计为四直棱结构,直棱侧面、上下斜面设计有切削齿。钻柱旋转过程中,切削齿进入缩径井段对其进行扩眼、修整,易缩径井段位置每隔200~300 m安放1只井壁修整工具,解决了泥岩段缩径需要多次通井的问题,可显著提高钻井时效。
2.3.2 旋冲螺杆钻井工具
为提高页岩油二开造斜段造斜率和机械钻速,研制了旋冲螺杆钻井工具。该工具为螺杆钻具+冲击工具一体化设计(见图2),采用高输出扭矩的等壁厚高效螺杆,冲击部分能够将钻井液的压力能量转化为旋转破岩动力,输出高频冲击辅助钻头破岩,提高机械钻速。通过整体方案设计,旋冲螺杆工具弯点至连接钻头端面距离小于常规螺杆弯点至钻头端面距离,可提高造斜率。工具主要技术参数为:额定工作压耗≤8 MPa,输出扭矩8~18 kN·m,工作转速70~130 r/min,冲击频率10~40 Hz,工作温度0~120 ℃,使用寿命不小于180 h,弯点距离不大于2.00 m。旋冲螺杆钻井工具可以保护钻头,提高单只钻头的进尺和钻井速度,目前该工具已形成系列化产品及成熟的现场施工工艺。
2.3.3 清砂接头
页岩油水平井井壁易失稳,大斜度段、水平段易形成岩屑床,仅依靠水力参数优化和工艺改进不能完全解决井眼清洁的问题[14],为此,研制了清砂接头(见图3)。该接头设计有V形螺旋槽式流道和反向螺旋结构,采用漏斗式结构,流道入口尺寸大于出口尺寸,悬浮岩屑进入V形螺旋槽后流速急剧增大并改变方向,提高岩屑运移速度,上返钻井液流经V形螺旋槽后进入反向螺旋结构形成紊流,可将低边岩屑悬浮在井筒中。工具主要技术参数为:总长1 250 mm,上下接头外径为165 mm;V形螺旋槽长240~350 mm,最大外径165 mm。该工具可以破坏岩屑床,解决页岩油水平井塌块剥落造成的岩屑堆积问题,降低沉砂卡钻风险和水平段钻进摩阻,提高机械钻速。
2.3.4 水力振荡器
针对三开水平段滑动钻进时的托压问题,研制了水力振荡器。该工具主要由振动部分、动力部分和阀体总成组成(见图4),其原理是利用钻井液在流经阀体总成时,因过流面积发生周期性变化从而产生水力脉冲,将钻具与井壁之间的静摩擦力转变为动摩擦力,降低钻柱与井壁之间的摩阻,提高钻压传递效率[15-16]。应用水力振荡器能够给钻头施加真实的钻压,并保证工具面稳定,提高水平井钻井效率,降低发生井下故障的概率。水力振荡器主要工作技术参数为:排量32~36 L/s,压降3~4 MPa,频率16~17 Hz,振动幅度3~10 mm,振动冲击力37~43 kN。
2.4 钻井参数优化
根据古龙页岩油地质特性,模拟计算了不同钻速、钻杆条件下返砂所需的最小排量及岩屑床高度。计算结果表明:采用ϕ127.0 mm钻杆,当机械钻速为15.0 m/h、转速为90 r/min、排量为33 L/s时,岩屑床高度为3.2 mm;排量为36 L/s时,岩屑床高度为2.1 mm,排量与岩屑床高度成反比关系;排量超过40 L/s时,对页岩井壁冲刷严重,井壁冲刷力增大25%,因此确定最优排量为33~40 L/s。数值模拟计算结果表明,当转速为90 r/min、钻压为98 kN时,涡动转速可达400 r/min以上,井壁受到瞬时侧向应力最高可达600 MPa。为了减少钻具涡动、钻井液冲刷对井壁稳定的影响,并保证最大限度地携岩,减小岩屑床高度,根据理论计算和现场实践,对钻井参数进行了优化,确定了最优的钻井参数:排量33~40 L/s,转速90~110 r/min,钻压58.8~98.0 kN。采用该钻井参数钻进可达到提速效果。
3. 现场应用
3.1 总体应用情况
大庆油田页岩油水平井钻井提速技术在古龙页岩油区块3口井进行现场试验,平均完钻井深4 691 m,平均机械钻速19.03 m/h,平均钻井周期35.23 d,与该区块之前施工的水平井相比,机械钻速提高53.7%(见表1)。下面以试验1井为例介绍现场试验情况。
表 1 3口水平井现场试验数据Table 1. Field test data from 3 horizontal wells井号 井深/
m水平段长/
m机械钻速/
(m·h–1)钻井周期/
d钻速提高
效果,%试验1井 4 735 2 150 19.34 35.25 56.22 试验2井 4 623 1 820 18.65 34.23 50.65 试验3井 4 715 2 140 19.10 36.21 54.28 3.2 试验1井
试验1井是位于古龙页岩油试验区块的一口开发井,设计井深4 735 m,设计水平段长2 020 m,采用三开井身结构。现场施工时,一开,采用ϕ444.5 mm钻头钻至井深265.00 m,ϕ339.7 mm表层套管下至井深264.48 m;二开,采用ϕ311.1 mm钻头钻至井深2 364.00 m,ϕ244.5 mm技术套管下至井深2 363.42 m;三开,采用ϕ215.9 mm钻头钻至井深4 735.00 m,ϕ139.7 mm生产套管下至井深4 730.58 m。
二开从井深296.00 m开始进行造斜,第1趟钻采用1.25°旋冲螺杆钻具与ϕ311.1 mm PDC钻头配合的钻具组合,旋冲螺杆钻具增斜能力强,可合理确定滑动钻进和复合钻进比例,提高机械钻速;进尺1 320 m,机械钻速43.56 m/h。第2趟钻采用ϕ311.1 mm PDC钻头+1.25°常规螺杆的钻具组合,距钻头300 m的裸眼段每隔7柱钻杆使用1只井壁修整工具,共使用5只井壁修整工具,防止目的层上部地层缩径导致卡钻。1 700~1 856 m井段钻进过程中工具面不稳,定向托压严重,采用小钻压钻进,并采用大排量循环和井壁修整工具修整缩径井眼,钻进情况得到改善,第2趟钻进尺779 m,机械钻速14.78 m/h。
三开ϕ215.9 mm井段进尺2 371 m,钻至井深4 735 m,3趟钻完成。第1趟钻采用PDC钻头+1.50°常规螺杆+LWD钻具组合,初期复合钻进正常,钻至井深2 492 m开始定向,定向过程中出现蹩跳钻现象,滑动钻进占比78.82%;钻至井深2 623 m,起钻更换钻头和螺杆;第1趟钻进尺259 m(2 364~2 623 m),机械钻速6.53 m/h。第2趟钻采用PDC钻头+1.50°常规螺杆+LWD+水力振荡器钻具组合,水力振荡器距钻头150 m,滑动钻进占比降至40.74%,机械钻速由6.53 m/h提至12.47 m/h;第2趟钻进尺256 m,进入A靶点后起钻,换旋转导向钻具组合。第3趟钻采用PDC钻头+旋转导向工具+清砂接头钻具组合,距钻头200 m处安放第1只清砂接头,然后每隔5柱钻杆安装1只清砂接头,清砂接头能在一定程度上减小岩屑床高度,降低卡钻风险;第3趟钻进尺1 856 m(2 879~4 735 m),机械钻速18.29 m/h。
试验1井完钻井深4 735 m,水平段长2 150 m,钻井周期35.25 d,全井平均机械钻速19.03 m/h,其中二开机械钻速高达43.56 m/h,钻井提速效果较好。
4. 结论与建议
1)针对大庆油田古龙区块页岩油水平井的钻井技术难点,开展了井身结构、井眼轨道和钻井参数优化及钻井提速工具研究和等技术攻关,形成了大庆油田页岩油水平井钻井提速技术。
2)大庆油田页岩油水平井钻井提速技术解决了地层稳定性差、井眼轨迹控制困难和水平段机械钻速低等技术难点,降低了井下钻井风险,大幅度了提高钻井速度,缩短了钻井周期,为加快大庆油田古龙区块页岩油勘探开发提供了技术支撑。
3)为了进一步提高页岩油水平井机械钻速,建议加强钻井液井壁稳定井眼清洁技术、高性能旋转导向技术和高效减摩降阻技术等技术攻关,进一步完善页岩油水平井钻井提速技术,更好地满足大庆古龙区块页岩油高效勘探开发的需求。
-
[1] 马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9. MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
[2] 王敏生,光新军,皮光林,等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术,2018,46(6):1–8. WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.
[3] 路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术,2019,47(1):1–7. doi: 10.11911/syztjs.2019027 LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027
[4] 曾涛,张弼驰,吴雪,等. 斯伦贝谢近10年科技创新经验与启示[J]. 国际石油经济,2019,27(9):25–32. doi: 10.3969/j.issn.1004-7298.2019.09.004 ZENG Tao, ZHANG Bichi, WU Xue, et al. Experiences and implications from Schlumberger’s scientific and technological innovation over ten years[J]. International Petroleum Economics, 2019, 27(9): 25–32. doi: 10.3969/j.issn.1004-7298.2019.09.004
[5] 吕建中,杨虹,孙乃达. 全球能源转型背景下的油气行业技术创新管理新动向[J]. 石油科技论坛,2019,38(4):1–8. LYU Jianzhong, YANG Hong, SUN Naida. New orientation of oil and gas industrial technology innovation management against background of global energy transformation[J]. Oil Forum, 2019, 38(4): 1–8.
[6] 袁磊,杨虹,何艳青. 国内外大型先进企业开放式创新的动因与模式[J]. 石油科技论坛,2015,34(4):25–30. doi: 10.3969/j.issn.1002-302x.2015.04.005 YUAN Lei, YANG Hong, HE Yanqing. Motivations and models of open innovation at Chinese and overseas large-scale excellent enterprises[J]. Oil Forum, 2015, 34(4): 25–30. doi: 10.3969/j.issn.1002-302x.2015.04.005
[7] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069 DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
[8] 张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术,2019,47(3):9–17. doi: 10.11911/syztjs.2019061 ZHANG Jinhong. Current status and outlook for the development of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9–17. doi: 10.11911/syztjs.2019061
[9] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
[10] 路保平,鲍洪志,余夫. 基于流体声速的碳酸盐岩地层孔隙压力求取方法[J]. 石油钻探技术,2017,45(3):1–7. LU Baoping, BAO Hongzhi, YU Fu. A pore pressure calculating method for carbonate formations based on fluid velocity[J]. Petroleum Drilling Techniques, 2017, 45(3): 1–7.
[11] 王兴隆,程远方,赵益忠. 钻井作业中泥页岩地层井壁稳定受温度影响的规律研究[J]. 石油钻探技术,2007,35(2):42–45. doi: 10.3969/j.issn.1001-0890.2007.02.013 WANG Xinglong, CHENG Yuanfang, ZHAO Yizhong. The effect of temperature on wellbore stability in shales during drilling[J]. Petroleum Drilling Techniques, 2007, 35(2): 42–45. doi: 10.3969/j.issn.1001-0890.2007.02.013
[12] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542. SU Yi’nao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
[13] 路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234. LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.
[14] 柴龙,林永学,金军斌,等. 塔河油田外围高温高压井气滞塞防气窜技术[J]. 石油钻探技术,2018,46(5):40–45. CHAI Long, LIN Yongxue, JIN Junbin, et al. Anti-gas channeling technology with gas-block plug for high temperature and high pressure wells in the periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40–45.
[15] 罗发强,韩子轩,柴龙,等. 抗高温气滞塞技术的研究与应用[J]. 钻井液与完井液,2019,36(2):165–169. LUO Faqiang, HAN Zixuan, CHAI Long, et al. Study and application of high temperature gas blocking plug[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 165–169.
[16] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术,2017,45(6):8–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
[17] 韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺,2019,41(5):555–561. HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing Area[J]. Oil Drilling & Production Technology, 2019, 41(5): 555–561.
[18] 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术,2019,47(3):25–33. doi: 10.11911/syztjs.2019062 ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062
[19] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术,2019,47(6):9–14. doi: 10.11911/syztjs.2019118 LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
[20] 马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步[J]. 石油钻探技术,2019,47(3):34–40. doi: 10.11911/syztjs.2019055 MA Kaihua, GU Lei, YE Haichao. The demands on deep oil/gas exploration & development and the technical advancement of liner hangers[J]. Petroleum Drilling Techniques, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055
[21] 赵旭,姚志良,胡兴军,等. 一种新型自适应调流控水装置的设计及机理研究[J]. 机床与液压,2019,47(6):69–75. ZHAO Xu, YAO Zhiliang, HU Xingjun, et al. Design and principle analysis of a new type of adaptive inflow control device[J]. Machine Tool & Hydraulics, 2019, 47(6): 69–75.
[22] 赵旭,龙武,姚志良,等. 水平井砾石充填调流控水筛管完井技术[J]. 石油钻探技术,2017,45(4):65–70. ZHAO Xu, LONG Wu, YAO Zhiliang, et al. Completion techniques involving gravel-packing inflow-control screens in horizontal wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 65–70.
[23] 赵旭. 自适应调流控水技术研究与试验[J]. 石油机械,2019,47(7):93–98. ZHAO Xu. Automatic inflow control technology for water con-trol[J]. China Petroleum Machinery, 2019, 47(7): 93–98.
[24] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95–102. doi: 10.11911/syztjs.2019054 WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054
[25] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术,2014,42(4):7–13. LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.
[26] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120. doi: 10.11911/syztjs.2019068 LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
[27] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022 LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
[28] 赵锐,赵腾,李慧莉,等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏,2019,26(5):8–13. ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special oil & Gas Reservoirs, 2019, 26(5): 8–13.
[29] 丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术,2019,47(3):41–49. DING Shidong, TAO Qian, MA Lanrong. Progress, outlook, and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41–49.
[30] 侯亮,杨虹,刘知鑫. 2019测井技术发展动向与展望[J]. 世界石油工业,2019,26(6):58–63. HOU Liang, YANG Hong, LIU Zhixin. Development and prospect of well logging technologies in 2019[J]. World Petroleum Industry, 2019, 26(6): 58–63.
[31] 张桂清. 随钻测井发展历程及四大服务公司的随钻测井技术[R]. 北京: 中国石油集团经济技术研究院, 2011. ZHANG Guiqing. The development of logging while drilling technology and the technology in the four major service companies[R]. Beijing: CNPC Economic & Technology Research Institute, 2011.
[32] 许玛丽. 国内外随钻测量技术现状与展望[J]. 化工管理,2019(17):109–110. doi: 10.3969/j.issn.1008-4800.2019.17.069 XU Mali. resent situation and prospect of MWD technology at home and abroad[J]. Chemical Enterprise Management, 2019(17): 109–110. doi: 10.3969/j.issn.1008-4800.2019.17.069
[33] 杨虹. 四大测井服务公司的技术管理模式[J]. 测井技术,2010,34(6):511–516. doi: 10.3969/j.issn.1004-1338.2010.06.001 YANG Hong. The R & D strategies and management of the major logging service companies[J]. Well Logging Technology, 2010, 34(6): 511–516. doi: 10.3969/j.issn.1004-1338.2010.06.001
[34] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155.
[35] 王丽忱,朱桂清,甄鉴. 随钻测井数据传输技术新进展[J]. 石油科技论坛,2014,33(6):42–45. WANG Lichen, ZHU Guiqing, ZHEN Jian. New progress in LWD data transmission technology[J]. Oil Forum, 2014, 33(6): 42–45.
[36] 周小慧,宋桂桥,张卫华,等. 随钻地震技术及其新进展[J]. 石油物探,2016,55(6):913–923. doi: 10.3969/j.issn.1000-1441.2016.06.017 ZHOU Xiaohui, SONG Guiqiao, ZHANG Weihua, et al. Current research progress of seismic while drilling technology[J]. Geophysical Prospecting for Petroleum, 2016, 55(6): 913–923. doi: 10.3969/j.issn.1000-1441.2016.06.017
[37] 李新,肖立志,刘化冰. 随钻核磁共振测井的特殊问题与应用实例[J]. 测井技术,2011,35(3):200–205. LI Xin, XIAO Lizhi, LIU Huabing. Key issues and application cases of NMR logging while drilling[J]. Well Logging Technology, 2011, 35(3): 200–205.
[38] 廖东良,路保平,陈延军. 页岩气地质甜点评价方法:以四川盆地焦石坝页岩气田为例[J]. 石油学报,2019,40(2):144–151. LIAO Dongliang, LU Baoping, CHEN Yanjun. An evaluation method of geological sweet spots of shale gas reservoir: a case study of the Jiaoshiba Gas Field, Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 144–151.
[39] 陈晓静. 国内外MWD仪器的发展和应用[J]. 中国石油和化工标准与质量,2018,38(14):92–93. doi: 10.3969/j.issn.1673-4076.2018.14.046 CHEN Xiaojing. Development and application of MWD instrument at home and abroad[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(14): 92–93. doi: 10.3969/j.issn.1673-4076.2018.14.046
[40] 刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767–1775. doi: 10.6038/cjg20150526 LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775. doi: 10.6038/cjg20150526
[41] 倪卫宁,张晓彬,万勇,等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术,2017,45(2):115–120. NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115–120.
[42] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058 JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
[43] 陈作,曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术,2016,44(1):6–11. CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6–11.
[44] 冯国强,赵立强,卞晓冰,等. 深层页岩气水平井多尺度裂缝压裂技术[J]. 石油钻探技术,2017,45(6):77–82. FENG Guoqiang, ZHAO Liqiang, BIAN Xiaobing, et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays[J]. Petroleum Drilling Techniques, 2017, 45(6): 77–82.
[45] 王海涛,蒋廷学,卞晓冰,等. 深层页岩压裂工艺优化与现场试验[J]. 石油钻探技术,2016,44(2):76–81. WANG Haitao, JIANG Tingxue, BIAN Xiaobing, et al. Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76–81.
[46] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111. LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.
[47] 陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82–87. CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82–87.
[48] 陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8. CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8.
[49] 任红,裴学良,吴仲华,等. 天然气水合物保温保压取心工具研制及现场试验[J]. 石油钻探技术,2018,46(3):44–48. REN Hong, PEI Xueliang, WU Zhonghua, et al. Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J]. Petroleum Drilling Techniques, 2018, 46(3): 44–48.
[50] 赵金洲. 文23地下储气库关键工程技术[J]. 石油钻探技术,2019,47(3):18–24. ZHAO Jinzhou. The key engineering techniques of the Wen 23 underground gas storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 18–24.
[51] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
[52] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,43(4):505–512. doi: 10.7623/syxb202004013 WANG Minsheng, GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica, 2020, 43(4): 505–512. doi: 10.7623/syxb202004013
[53] 闫铁,徐瑞,刘维凯,等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报,2020,44(4):15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003 YAN Tie, XU Rui, LIU Weikai, et al. Research and development of intelligent drilling technology in China[J]. Journal of Northeast Petroleum University, 2020, 44(4): 15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003
[54] 张立立,高迅. 7000米钻机自动化升级改造系统的研制及应用[J]. 石化技术,2019,26(12):232–236. doi: 10.3969/j.issn.1006-0235.2019.12.142 ZHANG Lili, GAO Xun. Development and application of automatic upgrading system for 7000m drilling rig[J]. Petrochemical Industry Technology, 2019, 26(12): 232–236. doi: 10.3969/j.issn.1006-0235.2019.12.142
-
期刊类型引用(12)
1. 刘威. 长水平段水平井钻井技术难点及改进措施. 西部探矿工程. 2024(07): 74-77 . 百度学术
2. 汪海阁,常龙,卓鲁斌,席传明,欧阳勇. 中国石油陆相页岩油钻井技术现状与发展建议. 新疆石油天然气. 2024(03): 1-14 . 百度学术
3. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
4. 蔚远江,王红岩,刘德勋,赵群,李晓波,武瑾,夏遵义. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学. 2023(01): 191-205 . 百度学术
5. 郭婷婷. 泥页岩易垮塌油藏钻井提速工艺技术研究. 西部探矿工程. 2023(10): 73-75+79 . 百度学术
6. 张文平,许争鸣,吕泽昊,赵雯. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究. 石油钻探技术. 2023(05): 96-105 . 本站查看
7. 李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 . 百度学术
8. 田启忠,戴荣东,王继强,李成龙,黄豪彩. 胜利油田页岩油丛式井提速提效钻井技术. 石油钻采工艺. 2023(04): 404-409 . 百度学术
9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 . 百度学术
10. 倪维军,杨国昊,翟喜桐,马龙飞. 延安气田富县区域下古生界水平井优快钻井技术. 石油工业技术监督. 2023(12): 44-48 . 百度学术
11. 姜文亚,于浩阳,陈长伟,宋舜尧,高莉津,王晓东,刘广华,冯建园. 陆相页岩油规模效益建产探索与实践. 现代工业经济和信息化. 2023(11): 249-252 . 百度学术
12. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看
其他类型引用(1)