Antileaking and Lost Circulation Control Technology for Deep Coalbed Methane Well in the Yanchuannan Block
-
摘要: 延川南区块深部煤层气资源丰富,但钻井过程中漏失严重。为了降低漏失发生频次及其造成的经济损失,保证该区块煤层气井安全高效成井,在分析该区块地质特征和漏失机理的基础上,研究形成了由随钻堵漏钻井液和承压堵漏工艺组成的煤层气井防漏堵漏技术。延川南区块上部地层孔隙发育,以孔隙型渗漏为主,采用加入5%复合堵漏材料的随钻堵漏钻井液进行防漏堵漏;下部地层天然裂缝发育,以裂缝性漏失为主,采用加入7%复合堵漏材料的随钻堵漏钻井液进行防漏堵漏;对于储层段等裂缝易扩展的地层,采用加入10%复合堵漏材料的随钻堵漏钻井液进行堵漏。针对煤层气井无防喷器或封井器无法实施承压堵漏的问题,研制了井口简易胶塞封隔器,形成了煤层气井承压堵漏工艺。延川南区块深部煤层气井应用防漏堵漏技术后,漏失率由41.53%降至23.07%,处理漏失的时间也大幅缩短。现场应用表明,煤层气井防漏堵漏技术可降低延川南区块深部煤层气井的漏失率,缩短钻井周期,降低钻井成本,提高该区块煤层气的开发效益。Abstract: The Yanchuannan Block possesses rich deep coalbed methane resources but has serious lost circulation problems during the drilling process. In order to reduce the frequency of the occurrence of lost circulation, minimize the economic losses induced by lost circulation, and ensure the safe and efficient development of coalbed methane wells,we developed a anti-leaking and lost circulation control technology. Based on the analysis of the geological characteristics and the lost circulation mechanism, the new technology incorporated plugging-while-drilling fluids and pressure-bearing plugging process was proposed. In the Yanchuannan Block where the upper formations develop pores, pore-type lost circulation predominates, 5% composite plugging materials are added to the drilling fluid for lost circulation control. The lower formations develop natural fractures, and are dominated by fracture-type lost circulation, accordingly 7% composite plugging materials are added to the plugging-while-drilling fluids for leakage prevention and plugging. For the formations where fractures can easily propagate, plugging-while-drilling fluids with 10% composite plugging materials were applied for plugging. In order to solve the problems that some coalbed methane wells have no blowout preventer or that the blowout preventer can’t perform pressure-bearing plugging, a packer with simple rubber plug at the wellhead was developed, which formed the pressure-bearing anti-leaking and lost circulation control technology for coalbed methane wells. After applying the technology to the deep coalbed methane wells in the Yanchuannan Block, the lost circulation rate was reduced from 41.53% to 23.07%, and the treatment time of lost circulation was also greatly shortened. The results also indicated that the proposed technology can lower the lost circulation rate of deep coalbed methane wells in the Yanchuannan Block, shorten drilling cycles, reduce the drilling cost, and improve the development benefits of coalbed methane in this block.
-
-
表 1 不同排量下漏层处的当量循环密度与漏失速率
Table 1 Equivalent circulating density and lost circulation speed in the thief zone at different displacements
排量/
(L·s–1)漏层深度/
m漏层动压力/
MPa动压力增量/
MPaECD/
(kg·L–1)漏失速率/
(m3·h–1)0 355 3.73 0 1.05 不漏 50 355 4.25 0.52 1.20 7 70 355 4.53 0.80 1.28 11 表 2 高温高压堵漏承压试验结果
Table 2 Results of pressure-bearing lost circulation control experiments at high temperature and high pressure
漏失空间类型 复合堵漏
材料加量,%不同压力下的滤失速率/(mL·min–1) 0.5① 1.0① 1.5① 2.0① 2.5① ϕ5 mm钢珠床 3 0 0 0 2.2 5.0 5 0 0 0 0 0.1 7 0 0 0 0 0 10 0 0 0 0 0 30 μm宽裂缝 3 0 0 2.4 3.0 6.0 5 0 0 1.4 2.7 4.4 7 0 0 0 0 0 10 0 0 0 0 0 50 μm宽裂缝 3 0 0 2.9 3.4 6.6 5 0 0 1.8 2.9 5.7 7 0 0 0 0.2 0.4 10 0 0 0 0 0 注:①的单位为MPa。 -
[1] 温声明,周科,鹿倩. 中国煤层气发展战略探讨:以中石油煤层气有限责任公司为例[J]. 天然气工业,2019,39(5):129–136. WEN Shengming, ZHOU Ke, LU Qian. A discussion on CBM development strategies in China based upon a case study of PetroChina Coalbed Methane Co., Ltd.[J]. Natural Gas Industry, 2019, 39(5): 129–136.
[2] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64–68. GENG Meng, CHEN Hao, CHEN Yanpeng, et al. Methods and results of the fourth round National CBM resources evaluation[J]. Coal Science and Technology, 2018, 46(6): 64–68.
[3] 周梓欣,李瑞明,张伟. 新疆深部煤层气资源勘探潜力[J]. 中国煤炭地质,2018,30(7):28–31. doi: 10.3969/j.issn.1674-1803.2018.07.06 ZHOU Zixin, LI Ruiming, ZHANG Wei. Deep part CBM resource exploration potential in Xinjiang[J]. Coal Geology of China, 2018, 30(7): 28–31. doi: 10.3969/j.issn.1674-1803.2018.07.06
[4] 李清,赵兴龙,谢先平,等. 延川南区块煤层气井高产水成因分析及排采对策[J]. 石油钻探技术,2013,41(6):95–99. doi: 10.3969/j.issn.1001-0890.2013.06.019 LI Qing, ZHAO Xinglong, XIE Xianping, et al. Causes of high water yield from CBM wells in Yanchuannan Block and draining measures[J]. Petroleum Drilling Techniques, 2013, 41(6): 95–99. doi: 10.3969/j.issn.1001-0890.2013.06.019
[5] 赵景辉, 高玉巧, 陈贞龙, 等. 陕西延川南区块深部地应力状态及其对煤层气开发效果的影响[J/OL]. 中国地质, http://kns.cnki.net/kcms/detail/11.1167.P.20191231.0939.006.html. ZHAO Jinghui, GAO Yuqiao, CHEN Zhenlong, et al. Stress state of deep seam and its influence on development performance of CBM wells in the sorth Yanchuan Block [J/OL]. Geology in China, http://kns.cnki.net/kcms/detail/11.1167.P.20191231.0939.006.html.
[6] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24–31. LI Xinzi, WANG Yunhai, JIANG Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 24–31.
[7] 李伯尧,王洪亮,印中华,等. 织金煤层气浅层大位移水平井钻完井技术[J]. 石油钻采工艺,2019,41(4):430–434. LI Boyao, WANG Hongliang, YIN Zhonghua, et al. Drilling and completion technologies for extended-reach shallow CBM wells in Zhijin[J]. Oil Drilling & Production Technology, 2019, 41(4): 430–434.
[8] 赵永哲, 徐堪社, 杨哲, 等. 贵州煤层气井中上部地层钻井防漏堵漏技术[J]. 煤田地质与勘探, 2019, 47(增刊1): 113-116. ZHAO Yongzhe, XU Kanshe, YANG Zhe, et al. Preventing and plugging lost circulation technique for drilling CBM wells in Guizhou[J]. Coal Geology & Exploration, 2019, 47(supplement 1): 113-116.
[9] 皇凡生,康毅力,李相臣,等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947–954. doi: 10.7623/syxb201708009 HUANG Fansheng, KANG Yili, LI Xiangchen, et al. Incipient motion mechanisms and control measures of coal fines during single-phase water flow in coalbed fractures[J]. Acta Petrolei Sinica, 2017, 38(8): 947–954. doi: 10.7623/syxb201708009
[10] KANG Yili, XU Chengyuan, YOU Lijun, et al. Comprehensive prediction of dynamic fracture width for formation damage control in fractured tight gas reservoir[J]. International Journal of Oil, Gas and Coal Technology, 2015, 9(3): 296–310. doi: 10.1504/IJOGCT.2015.069014
[11] KANG Yili, XU Chengyuan, YOU Lijun, et al. Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 20(supplement 3/4): 67–73.
[12] XU Chengyuan, KANG Yili, YOU Lijun, et al. Lost-circulation control for formation-damage prevention in naturally fractured reservoir: mathematical model and experimental study[J]. SPE Journal, 2017, 22(5): 1654–1670. doi: 10.2118/182266-PA
[13] IWASHITA D, MORITA N, TOMINAGA M. Shear-type borehole wall shifts induced during lost circulations[J]. SPE Drilling & Completion, 2008, 23(3): 301–313.
[14] 苏晓明,练章华,方俊伟,等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发,2019,46(1):168–172. SU Xiaoming, LIAN Zhanghua, Fang Junwei, et al. Lost circulation material for abnormally high temperature and pressure fractured-vuggy carbonate reservoirs in Tazhong Block, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 168–172.
[15] 李大奇,刘四海,康毅力,等. 天然裂缝性地层钻井液漏失规律研究[J]. 西南石油大学学报(自然科学版),2016,38(3):101–106. doi: 10.11885/j.issn.1674-5086.2014.06.05.04 LI Daqi, LIU Sihai, KANG Yili, et al. Dynamic behavior of drilling fluid leakage in naturally fractured formations[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 101–106. doi: 10.11885/j.issn.1674-5086.2014.06.05.04
-
期刊类型引用(5)
1. 程为彬,王洋,康思民,胡静文,郭颖娜. 井下定功率高效无线电能传输系统的分析与设计. 电源学报. 2022(02): 183-191 . 百度学术
2. 张辉,刘庆波,底青云,杨永友,谢棋军. 井下非接触电能传输耦合器仿真与优化. 地球物理学进展. 2022(04): 1780-1788 . 百度学术
3. 宋红喜,曾义金,张卫,米金泰,黄中伟. 旋转导向系统现状及关键技术分析. 科学技术与工程. 2021(06): 2123-2131 . 百度学术
4. 孟巍,朱伟红,孙师贤. ICPT技术在旋转导向钻井工具中的应用. 电子技术与软件工程. 2018(09): 64-66 . 百度学术
5. 孟巍,张国强,菅志军,李春楠. 一种井下非接触电能信号耦合传输装置的设计. 石油管材与仪器. 2018(01): 9-13 . 百度学术
其他类型引用(4)