Ultra-Short Liner Cementing Technology for Highly Deviated Wells in the Chenghai Oilfield
-
摘要: 埕海油田大斜度井技术套管下不到底而漏封水层,采用尾管补救固井时存在超短尾管串在大斜度井段悬重轻、丢手和判断丢手是否成功困难、水层活跃易窜流、尾管串居中度差及顶替效率低等问题,为此进行了大斜度井超短尾管固井技术研究。在封隔式尾管悬挂器下部增加牵制短节,增大尾管串悬重;使用膨胀防窜水泥浆体系,以防止地层水窜流;应用PVI软件模拟优化扶正器加装位置,提高尾管串居中度;优化固井浆柱结构及流变性能,以提高顶替效率。综合上述措施,形成了大斜度井超短尾管固井技术。该技术在埕海油田2口大斜度井进行了现场试验,试验中牵制短节反向牵引明显,尾管串丢手顺利,丢手判断明显,油水层封隔良好,后期开采获得了稳定高产油流。研究表明,大斜度井超短尾管固井技术可以解决埕海油田大斜度井超短尾管固井难题,也可为其他类似复杂情况的固井提供技术参考。Abstract: In the Chenghai Oilfield’s highly deviated wells, the intermediate casing cannot be run to the correct depth, so that the water layers cannot be isolated. During the remedial cementing with ultra-short liners, there are such problems in the highly deviated segments as low hang weight, difficulty in releasing and its identification, an active water layer susceptible to channeling, a poor centralization grade of the liner, and low displacement efficiency. For that reason, the ultra-short liner cementing technology for highly deviated wells was investigated. A hold-down sub installed under the parker-type liner hanger could increase the hang weight of the liner. The expanding cement slurry system was used to prevent the formation water from channeling. The centralizer position was optimized with PVI to raise the centralization grade of liner, and the structure and rheological properties of cementing slurry column were optimized to improve displacement efficiency. The ultra-short liner cementing technology for highly deviated wells was then developed. The technology was applied in two highly deviated wells in Chenghai Oilfield, with a high downward force of the hold-down sub, successful liner releasing and evident identification of it, and well isolated oil-water layers. In the later production rounds, stable and high oil flow was obtained. The research demonstrates that the ultra-short liner cementing technology for highly deviated wells solves the problem of ultra-short liner cementing for highly deviated wells in the Chenghai Oilfield, and also provides a technical reference for cementing in other similar complex situations.
-
-
表 1 固井浆柱结构及流变性能
Table 1 Cementing slurry column structure and rheological properties
流体 密度/
(kg·L–1)流性
指数稠度系数/
(Pa·sn)塑性黏度/
(mPa·s)动切力/
Pa完钻时钻井液 1.12 0.65 0.32 20 7.7 调整后钻井液 1.10 0.74 0.13 14 3.6 隔离液 1.35 0.71 0.50 17 7.8 先导水泥浆 1.75 0.69 0.91 115 14.6 水泥浆 1.90 0.62 2.56 184 28.9 表 2 膨胀防窜水泥浆防窜性能的评价结果
Table 2 Channeling prevention performance evaluation results of expanding cement slurry
温度/
℃稠化时间/min 滤失量/
mLSPN 静胶凝强度过渡时间/min 窜流量/
mL30 Bc 100 Bc 50 315 330 36 2.75 12 0 70 233 244 38 2.50 11 0 90 190 200 40 2.62 10 0 表 3 膨胀防窜水泥浆硬化体的膨胀性能
Table 3 Expansion performance of hardened expanding cement slurry
温度/℃ 膨胀率,% 24 h 48 h 72 h 50 0.058 0.112 0.174 70 0.067 0.181 0.215 90 0.076 0.234 0.313 -
[1] 张明昌. 固井工艺技术[M]. 修订版. 北京: 中国石化出版社, 2017: 48–54. ZHANG Mingchang. Cementing technology[M]. Revised ed. Beijing: China Petrochemical Press, 2017: 48–54.
[2] 马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步[J]. 石油钻探技术,2019,47(3):34–40. doi: 10.11911/syztjs.2019055 MA Kaihua, GU Lei, YE Haichao. The demands on deep oil/gas exploration & development and the technical advancement of liner hangers[J]. Petroleum Drilling Techniques, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055
[3] 赵德利,马锦明,李强,等. 复杂井况下短轻尾管丢手技术研究与应用[J]. 石油矿场机械,2018,47(4):76–79. doi: 10.3969/j.issn.1001-3482.2018.04.016 ZHAO Deli, MA Jinming, LI Qiang, et al. Research and application of the technique for releasing short and light liner in complex well conditions[J]. Oil Field Equipment, 2018, 47(4): 76–79. doi: 10.3969/j.issn.1001-3482.2018.04.016
[4] 丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术,2019,47(3):41–49. doi: 10.11911/syztjs.2019073 DING Shidong, TAO Qian, MA Lanrong. Progress, outlook, and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41–49. doi: 10.11911/syztjs.2019073
[5] 张瑞,侯跃全,郭朝辉,等. 川西长裸眼水平井下尾管循环解阻关键技术[J]. 石油钻探技术,2020,48(3):52–57. doi: 10.11911/syztjs.2020040 ZHANG Rui, HOU Yuequan, GUO Zhaohui, et al. Key techniques for eliminating resistance while running liner with circulation in long horizontal openhole wells in the Western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 52–57. doi: 10.11911/syztjs.2020040
[6] 张君亚,夏柏如,曹永斌,等. Rabaa-1井ϕ177.8 mm尾管固井“插旗杆”事故处理[J]. 石油钻采工艺,2010,32(4):33–36. doi: 10.3969/j.issn.1000-7393.2010.04.009 ZHANG Junya, XIA Bairu, CAO Yongbin, et al. Handling of ϕ177.8 mm liner sticking occurred when cementing in Rabaa-1 Well[J]. Oil Drilling & Production Technology, 2010, 32(4): 33–36. doi: 10.3969/j.issn.1000-7393.2010.04.009
[7] 刘志雄. 王侧14-15井套管开窗侧钻小井眼尾管固井技术[J]. 钻采工艺,2019,42(2):121–123. LIU Zhixiong. Liner cementing technique of slim hole for casing window sidetracking Well Wangce 14-15[J]. Drilling & Production Technology, 2019, 42(2): 121–123.
[8] 郭朝辉,徐明会,孙文俊. 巴基斯坦UEP油田牵制型旋转尾管固井关键技术[J]. 钻采工艺,2018,41(6):30–33. doi: 10.3969/J.ISSN.1006-768X.2018.06.09 GUO Zhaohui, XU Minghui, SUN Wenjun. Key issues of liner cementing using rotating liner hanger with hold-down sub in UEP Oilfield of Pakistan[J]. Drilling & Production Technology, 2018, 41(6): 30–33. doi: 10.3969/J.ISSN.1006-768X.2018.06.09
[9] 冯丽莹,郭朝辉,陈志峰,等. 尾管固井用牵制短节的研制与应用[J]. 石油钻探技术,2014,42(4):106–110. FENG Liying, GUO Zhaohui, CHEN Zhifeng, et al. Development and application of a hold-down sub for liner cementing[J]. Petroleum Drilling Techniques, 2014, 42(4): 106–110.
[10] 张静蕾,刘文钰,李宁,等. 埕海6区块火成岩类型及分布规律研究[J]. 特种油气藏,2019,26(5):64–70. doi: 10.3969/j.issn.1006-6535.2019.05.011 ZHANG Jinglei, LIU Wenyu, LI Ning, et al. Igneous rock classification and distribution patterns in the Block 6 of Chenghai Oilfield[J]. Special Oil & Gas reservoirs, 2019, 26(5): 64–70. doi: 10.3969/j.issn.1006-6535.2019.05.011
[11] 王琼,胡晋军,耿志山,等. 渤海湾埕海新区水平井固井配套油气层保护技术[J]. 钻井液与完井液,2019,36(4):491–494. doi: 10.3969/j.issn.1001-5620.2019.04.017 WANG Qiong, HU Jinjun, GENG Zhishan, et al. Reservoir protection technology used in cementing horizontal wells in Chenghai Xinqu, Bohai Bay[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 491–494. doi: 10.3969/j.issn.1001-5620.2019.04.017
[12] 杨谋,唐大千,袁中涛,等. 固井注水泥浆顶替效率评估的新模型[J]. 天然气工业,2019,39(4):115–122. YANG Mou, TANG Daqian, YUAN Zhongtao, et al. A new model for evaluating the displacement efficiency of cement slurry[J]. Natural Gas Industry, 2019, 39(4): 115–122.
[13] 谭元铭,徐璧华,朱亮. 影响水平井注水泥顶替效率主要因素的数模分析研究[J]. 探矿工程(岩土钻掘工程),2015,42(4):6–12. TAN Yuanming, XU Bihua, ZHU Liang. Analysis and research on numerical simulation of the main factors affecting cementing displacement efficiency at horizontal wells[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015, 42(4): 6–12.
[14] 冯福平,邓平,邢均,等. 水平井偏心环空稳定顶替界面形状研究[J]. 断块油气田,2015,22(1):120–125. FENG Fuping, DENG Ping, XING Jun, et al. Research on interface shape of steady-state displacement in eccentric annulus of horizontal well[J]. Fault-Block Oil & Gas Field, 2015, 22(1): 120–125.
[15] 初永涛,张林海,刘洋,等. 水泥浆综合防窜能力综合评价方法[J]. 断块油气田,2013,20(5):678–680. CHU Yongtao, ZHANG Linhai, LIU Yang, et al. Comprehensive evaluation method of anti-gas channeling ability of cement slurry[J]. Fault-Block Oil & Gas Field, 2013, 20(5): 678–680.
[16] 王春雨,步玉环,沈忠厚. 油井水泥膨胀性自修复剂机理研究[J]. 钻井液与完井液,2018,35(6):98–102, 107. doi: 10.3969/j.issn.1001-5620.2018.06.018 WANG Chunyu, BU Yuhuan, SHEN Zhonghou. Study on the mechanism of expansive self-healing additives for oil well cement[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 98–102, 107. doi: 10.3969/j.issn.1001-5620.2018.06.018
[17] 徐鹏,邹建龙,赵宝辉,等. 油井水泥膨胀剂研究进展[J]. 油田化学,2012,29(3):368–374. XU Peng, ZOU Jianlong, ZHAO Baohui, et al. Developments of expanding additives for oilwell cementing compositions[J]. Oilfield Chemistry, 2012, 29(3): 368–374.
[18] 刘崇建. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001: 189–192. LIU Chongjian. Theory and application of oil and gas well cementing[M]. Beijing: Petroleum Industry Press, 2001: 189–192.
[19] 焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):512–520. doi: 10.3969/j.issn.1001-5620.2020.04.018 JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan Basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 512–520. doi: 10.3969/j.issn.1001-5620.2020.04.018
[20] 杨红歧,陈会年,邓天安,等. 元坝气田超深探井小尾管防气窜固井技术[J]. 石油钻采工艺,2020,42(5):592–599. YANG Hongqi, CHEN Huinian, DENG Tian’an, et al. The anti-gas channeling small-liner cementing technology for ultra deep exploration wells of Yuanba Gasfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 592–599.
-
期刊类型引用(3)
1. 苏超, 吴亮, 张卓, 陈洪地. 页岩气返排测试过程中防砂控砂技术浅析. 非常规油气. 2018(01): 76-79 . 百度学术
2. 苏超, 吴亮, 张卓, 陈洪地. 页岩气返排测试过程中防砂控砂技术浅析. 非常规油气. 2018(02): 94-97 . 百度学术
3. 李川, 张翔, 杜现飞, 唐梅荣, 王广涛, 李昌恒. 鄂尔多斯盆地致密油应力循环压裂技术. 石油钻采工艺. 2018(04): 494-498 . 百度学术
其他类型引用(2)