基于相变蓄热原理的深井钻井液降温实验研究

刘均一, 陈二丁, 李光泉, 袁丽

刘均一, 陈二丁, 李光泉, 袁丽. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131
引用本文: 刘均一, 陈二丁, 李光泉, 袁丽. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131
LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131
Citation: LIU Junyi, CHEN Erding, LI Guangquan, YUAN Li. Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. DOI: 10.11911/syztjs.2020131

基于相变蓄热原理的深井钻井液降温实验研究

基金项目: 中国石油化工集团有限公司科技攻关项目“钻井液降温技术研究与应用”(编号:JP20005)部分研究内容
详细信息
    作者简介:

    刘均一(1988—),男,山东淄博人,2010年毕业于中国石油大学(华东)石油工程专业,2016年获中国石油大学(华东)油气井工程专业博士学位,高级工程师,主要从事钻井液完井液新技术方面的研究工作。E-mail:danielliu1988@126.com。

  • 中图分类号: TE254

Experimental Study of Drilling Fluid Cooling in Deep Wells Based on Phase Change Heat Storage

  • 摘要: 针对深部油气钻探开发中钻井液、井下仪器抗高温稳定性较差的问题,首次将相变材料应用于钻井液中,开展了基于相变蓄热原理的深井钻井液降温实验研究。在评价相变材料热物性的基础上,分析了相变材料的蓄热控温特性;对比评价了相变材料对钻井液流变滤失性能的影响;采用自制的钻井液循环模拟实验装置,测试了钻井液降温性能实验曲线。结果表明,1#—3#相变材料的相变温度为120~145 ℃,相变潜热为90.3~280.6 J/g;2#相变材料的相变潜热最大,相变蓄热特性最优,其与钻井液的配伍性能良好,加量达12%时钻井液的黏度、切力和滤失量基本不变,钻井液循环温度约可降低20 ℃,且具有良好的重复利用价值。研究结果表明,利用相变材料的“相变蓄热原理”可以降低钻井液的循环温度,为深井高温钻井液降温提供了新的技术思路。
    Abstract: Focusing on such problems as poor high-temperature stability of drilling fluids and downhole instruments in the development of deep gas and oil, phase change materials were introduced into drilling fluids for the first time to model the cooling of drilling fluids in deep wells based on phase change heat storage principle. First, the heat storage characteristics of the phase change materials were investigated on the basis of evaluating the thermophysical properties of the phase change materials. Then, the influence of phase change materials on the rheological and filtration properties of drilling fluids was comparatively evaluated. Finally, the experimental curves for the cooling performance of drilling fluids were measured using a self-made experimental device of drilling fluid circulating simulation. The results showed that the phase change temperature and the latent heat of phase change for the phase change materials 1#–3#were approximately 120–145 °C and 90.3–280.6 J/g, respectively; and the phase change material 2# displayed the highest latent heat and the best heat storage performance of the phase change, exhibiting a compatibility withdrilling fluid. Specifically, the viscosity, shear force, and filtration of the drilling fluids were basically unchanged when the concentration of the phase change material 2# increased to 12%, and the circulating temperature of the drilling fluids could be reduced by about 20 ℃, correspondingly. In addition, the phase change material 2# exhibited excellent reuse properties. In conclusion, the circulating temperature of the drilling fluids could be reduced by referring to the principle of phase change heat storage of phase change materials, which could provide a new technical thinking to apply to cooling technologies for high-temperature drilling fluids in deep wells.
  • 图  1   1#—3#相变材料的蓄热控温特性曲线

    Figure  1.   Heat storage characteristic curves of phase change materials 1#–3#

    图  2   钻井液循环模拟实验装置的基本结构

    Figure  2.   Basic structure of the experimental device for drilling fluid circulating simulation

    图  3   2#相变材料不同加量的钻井液循环降温曲线

    Figure  3.   Circulating cooling curves of drilling fluids with different concentrations of phase change material 2#

    图  4   1#—3#相变材料的钻井液降温性能实验结果对比

    Figure  4.   Comparison on experimental results of drilling fluid cooling performance of phase change materials 1#–3#

    表  1   相变材料的热物性参数测试结果

    Table  1   Test results of the thermophysical parameters of phase change materials

    相变
    材料
    产品
    代号
    D90/μm相变
    类型
    相变温度/
    相变潜热/
    (J·g–1
    1#GPC-132.1固–液145 90.3
    2#ALC-128.4固–固120280.6
    3#EPCM-C12.7固–液132126.2
    下载: 导出CSV

    表  2   钻井液流变性、滤失性测试结果

    Table  2   Test results of the rheological and filtration properties of drilling fluids

    配方实验
    条件
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/PaAPI滤失量/
    mL
    高温高压
    滤失量/mL
    滤饼厚度/
    mm
    pH值
    初切终切
    HT-MUD-1老化前41.031.010.05.08.03.09.0
    老化后43.030.013.04.59.03.212.42.29.0
    HT-MUD-2老化前51.039.012.05.59.02.89.0
    老化后53.038.514.55.510.0 3.011.82.08.5
    HT-MUD-3老化前47.536.011.55.09.03.29.0
    老化后50.537.013.55.010.5 2.611.62.08.5
    HT-MUD-4老化前42.532.010.55.08.53.29.0
    老化后43.531.012.55.09.53.012.02.29.0
     注:老化条件为180 ℃/16 h,高温高压滤失条件为150 ℃/3.5 MPa。
    下载: 导出CSV
  • [1] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069

    [2] 徐春春,邹伟宏,杨跃明,等. 中国陆上深层油气资源勘探开发现状及展望[J]. 天然气地球科学,2017,28(8):1139–1153.

    XU Chunchun, ZOU Weihong, YANG Yueming, et al. Status and prospects of exploration and exploitation of the deep oil & gas resources onshore China[J]. Natural Gas Geoscience, 2017, 28(8): 1139–1153.

    [3] 石昕,戴金星,赵文智. 深层油气藏勘探前景分析[J]. 中国石油勘探,2005,10(1):1–10. doi: 10.3969/j.issn.1672-7703.2005.01.001

    SHI Xin, DAI Jinxing, ZHAO Wenzhi. Analysis of deep oil and gas reservoirs exploration prospect[J]. China Petroleum Exploration, 2005, 10(1): 1–10. doi: 10.3969/j.issn.1672-7703.2005.01.001

    [4] 闫光庆,张金成. 中国石化超深井钻井技术现状与发展建议[J]. 石油钻探技术,2013,41(2):1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    YAN Guangqing, ZHANG Jincheng. Status and proposal of the Sinopec ultra-deep drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    [5] 孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73–81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 73–81.

    [6] 刘清友,湛精华,黄云,等. 深井、超深井高温高压井下工具研究[J]. 天然气工业,2005,25(10):73–75. doi: 10.3321/j.issn:1000-0976.2005.10.025

    LIU Qingyou, ZHAN Jinghua, HUANG Yun, et al. Study on high temperature and pressure down-hole tools of deep and super-deep wells[J]. Natural Gas Industry, 2005, 25(10): 73–75. doi: 10.3321/j.issn:1000-0976.2005.10.025

    [7] 杨晓峰. 抗高温sureshot MWD在兴古7块的应用[J]. 石油钻探技术,2012,40(1):119–122. doi: 10.3969/j.issn.1001-0890.2012.01.024

    YANG Xiaofeng. Application of high temperature resisting sureshot-MWD in Xinggu 7 Block[J]. Petroleum Drilling Techniques, 2012, 40(1): 119–122. doi: 10.3969/j.issn.1001-0890.2012.01.024

    [8] 陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8.

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8.

    [9] 马青芳. 钻井液冷却技术及装备综述[J]. 石油机械,2016,44(10):42–46.

    MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery, 2016, 44(10): 42–46.

    [10]

    MAURY V, GUENOT A. Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion, 1995, 10(1): 42–48.

    [11] 赵江鹏,孙友宏,郭威. 钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J]. 探矿工程(岩土钻掘工程),2010,37(9):1–5.

    ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on a new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(9): 1–5.

    [12]

    SALGADO SANCHEZ P, EZQUERRO J M, Porter J, et al. Effect of thermo-capillary convection on the melting of phase change materials in microgravity: experiments and simulations[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119717. doi: 10.1016/j.ijheatmasstransfer.2020.119717

    [13] 宋建建,许明标,王晓亮,等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015

    SONG Jianjian, XU Mingbiao, WANG Xiaoliang,et al. The effects of a new phase change material on the properties of low heat cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015

    [14]

    MIAO Chunyan, LU Gang, YAO Youwei, et al. Preparation of shape-stabilized phase change materials as temperature-adjusting powder[J]. Frontiers of Materials Science in China, 2007, 1(3): 284–287. doi: 10.1007/s11706-007-0051-8

    [15] 孙茹茹,李化建,黄法礼,等. 相变材料在水泥基材料中的应用[J]. 硅酸盐通报,2020,39(3):662–668, 676.

    SUN Ruru, LI Huajian, HUANG Fali, et al. Application of phase change materials in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 662–668, 676.

  • 期刊类型引用(6)

    1. 赵楠,廖伟,李立,赵一潞,陈慧卿. 高盐高渗砂岩油藏泡沫调剖体系研究及应用. 石油化工应用. 2023(09): 112-116 . 百度学术
    2. 闫月娟,曹宇航,刘崇江,李森,王尊策. 井下氮气泡沫发生器结构设计及发泡性能数值模拟. 机械设计. 2021(01): 64-71 . 百度学术
    3. 巩权峰,魏学刚,辛懂. 油田堵水调剖剂的研究进展. 石油化工应用. 2021(01): 10-13 . 百度学术
    4. 郭东红,李睿博,崔晓东,杨晓鹏,贾敏. 压力对改性α-烯烃磺酸盐起泡剂泡沫性能的影响. 精细石油化工. 2021(05): 10-13 . 百度学术
    5. 崔晓东,黄小琼,郭东红,杨晓鹏,贾敏. 中低温、高矿化度油藏调驱用泡沫剂体系的研究. 精细与专用化学品. 2020(09): 16-18 . 百度学术
    6. 李正辉,赵莉,陈菊涛,安金彪. 氮气驱与氮气泡沫驱技术适用性分析. 内蒙古石油化工. 2019(11): 83-85 . 百度学术

    其他类型引用(15)

图(4)  /  表(2)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  350
  • PDF下载量:  130
  • 被引次数: 21
出版历程
  • 收稿日期:  2020-05-04
  • 修回日期:  2020-11-08
  • 网络出版日期:  2020-11-29
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回