沧东凹陷页岩油水平井优快钻井技术

刘天恩, 张海军, 袁光杰, 李国韬, 阴启武, 陈斐

刘天恩, 张海军, 袁光杰, 李国韬, 阴启武, 陈斐. 沧东凹陷页岩油水平井优快钻井技术[J]. 石油钻探技术, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127
引用本文: 刘天恩, 张海军, 袁光杰, 李国韬, 阴启武, 陈斐. 沧东凹陷页岩油水平井优快钻井技术[J]. 石油钻探技术, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127
LIU Tianen, ZHANG Haijun, YUAN Guangjie, LI Guotao, YIN Qiwu, CHEN Fei. Optimized and Fast Drilling Technologies for Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127
Citation: LIU Tianen, ZHANG Haijun, YUAN Guangjie, LI Guotao, YIN Qiwu, CHEN Fei. Optimized and Fast Drilling Technologies for Horizontal Shale Oil Wells in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 46-52. DOI: 10.11911/syztjs.2020127

沧东凹陷页岩油水平井优快钻井技术

基金项目: 中国石油重大科技专项“大港油区效益增储稳产关键技术研究与应用”(编号:2018E-11)和“陆相中高成熟度页岩油勘探开发关键技术研究与应用”之子课题“沧东凹陷页岩油勘探开发示范工程”(编号:2019E-26-10)联合资助
详细信息
    作者简介:

    刘天恩(1984—),男,陕西西安人,2006年毕业于西安石油大学自动化专业,2009年获西安石油大学油气井工程专业硕士学位,高级工程师,主要从事钻井工程方面的研究工作。E-mail:liutianendr@cnpc.com.cn。

  • 中图分类号: TE243+.1

Optimized and Fast Drilling Technologies for Horizontal Shale Oil Wells in the Cangdong Sag

  • 摘要: 在沧东凹陷页岩油水平井钻井过程中,面临机械钻速低、安全风险大、固井质量难以保证等问题。为解决这些问题,预测了地层漏失压力和坍塌压力,进行了井身结构和井眼轨道优化、PDC钻头个性化设计,并集成盐水钻井液、旋转导向钻井技术、韧性水泥浆和漂浮顶替固井等配套技术,形成了沧东凹陷页岩油水平井优快钻井技术。该技术在沧东凹陷20口页岩油水平井进行了应用,应用结果显示:固井质量优质率提高了30.4%;井深超过4 500.00 m井的平均机械钻速提高了20.2%,平均钻井周期缩短了30.6%;井深小于4 500.00 m井的平均机械钻速提高了82.9%,平均钻井周期缩短了49.9%。研究与应用结果表明,该技术满足了沧东凹陷页岩油水平井优快钻井需求,为页岩油水平井高效开发提供了技术手段,也为国内各油田非常规油气藏钻井技术优化提供了借鉴。
    Abstract: During the drilling of horizontal shale oil wells in the Cangdong Sag, the low ROP (Rate of Penetration), high safety risk, and uncertain cementing quality impeded the efficient exploration and development of shale oil. To address these problems, investigations were implemented on the detailed prediction of formation leakage pressure and collapse pressure. They were then carried out the optimization of casing programs and borehole trajectories and the personalized design of PDC bits. Further, the matching technologies such as brine drilling fluid, rotary steering drilling, ductile cement slurry, and floating displacement cementing were integrated, forming an optimized and fast drilling technology for the horizontal shale oil wells in the Cangdong Sag. This technology was applied in 20 horizontal shale oil wells in the Cangdong Sag, and the cementing quality was improved by 30.4%. For the wells with a depth of more than 4 500.00 m, the average ROP increased by 20.2%, and the average drilling cycle was shortened by 30.6%. For wells with a depth of lower than 4 500.00 m, the average ROP increased by 82.9%, and the average drilling cycle was shortened by 49.9%. These results demonstrated that the proposed technology could meet the requirement for the optimized and fast drilling of horizontal shale oil wells in the Cangdong Sag, providing a technical means for the efficient exploration and development of horizontal shale oil wells and also a reference for the drilling technology optimization of unconventional oil and gas reservoirs in the oilfields of China.
  • 图  1   不同垂深、井斜角和方位角条件下的坍塌压力预测结果

    Figure  1.   Collapse pressure prediction at different vertical depths, deviation angles, and azimuths

    图  2   沧东凹陷东北地区漏失井当量循环密度回归结果

    Figure  2.   Regression results of ECD of lost wells in northeastern Cangdong Sag

    图  3   沧东凹陷西南地区已完钻井当量循环密度回归结果

    Figure  3.   Regression results of the ECD of drilled wells in southwestern Cangdong Sag

    图  4   沧东凹陷地层三压力剖面

    Figure  4.   Formation tri-pressure profile in the Cangdong Sag

    图  5   GD1702H井和GD1701H井的井身结构

    Figure  5.   Casing programs of Well GD1701H and Well GD1702H

    图  6   GY1-3-1H井三开井段钻柱屈曲分析结果

    Figure  6.   Buckling analysis of a drill string in the third section of Well GY1-3-1H

    表  1   GY1-3-1H井入窗前井眼轨道优化设计参数

    Table  1   Optimal design parameters of the borehole trajectories of Well GY1-3-1H before entering the window

    方案轨道类型初始造斜点
    井深/m
    第一造斜率/
    ((°)·(30m)–1
    第二造斜率/
    ((°)·(30m)–1
    一次稳斜角/
    (°)
    造斜段长度/
    m
    井斜角40°~60°
    井段长度/m
    设计井深/
    m
    1单圆弧3 166.003.03.0855.00200.005 547.00
    2双增3 050.002.43.425.0853.00179.005 524.00
    3双增3 269.005.03.050.0655.00274.005 559.00
    4双增3 100.003.03.533.1780.00171.005 524.00
    下载: 导出CSV
  • [1] 陶现林,徐泓,张莲,等. 涪陵页岩气水平井钻井提速技术[J]. 天然气技术与经济,2017,11(2):31–35.

    TAO Xianlin, XU Hong, ZHANG Lian, et al. Improvement of drilling speed of Fuling shale gas horizontal well[J]. Natural Gas Technology and Economy, 2017, 11(2): 31–35.

    [2] 王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术,2019,47(5):11–16.

    WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.

    [3] 周立宏,刘学伟,付大其,等. 陆相页岩油岩石可压裂性影响因素评价与应用:以沧东凹陷孔二段为例[J]. 中国石油勘探,2019,24(5):670–678. doi: 10.3969/j.issn.1672-7703.2019.05.013

    ZHOU Lihong, LIU Xuewei, FU Daqi, et al. Evaluation and application of influencing factors on the fracturability of continental shale oil reservoir: a case study of Kong 2 Member in Cangdong Sag[J]. China Petroleum Exploration, 2019, 24(5): 670–678. doi: 10.3969/j.issn.1672-7703.2019.05.013

    [4] 彭齐,周英操,周波,等. 凸脊型非平面齿PDC钻头的研制与现场试验[J]. 石油钻探技术,2020,48(2):49–55. doi: 10.11911/syztjs.2020035

    PENG Qi, ZHOU Yingcao, ZHOU Bo, et al. Development and field test of a non-planar cutter PDC bit with convex ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49–55. doi: 10.11911/syztjs.2020035

    [5] 祝小林,杨灿,张鸥,等. 新型PDC钻头砾岩破岩技术及应用[J]. 石油机械,2019,47(6):28–32.

    ZHU Xiaolin, YANG Can, ZHANG Ou, et al. Conglomerate rock breaking technology with new PDC cutter and its application[J]. China Petroleum Machinery, 2019, 47(6): 28–32.

    [6] 武强,齐昌利,郭俊磊,等. 页岩油水平井高效PDC 钻头设计及应用[J]. 设备管理与维修,2018(11):76–77.

    WU Qiang, QI Changli, GUO Junlei, et al. Design and application of high efficiency PDC bit in shale oil horizontal well[J]. Plant Maintenance Engineering, 2018(11): 76–77.

    [7] 马振锋,于小龙,杨全枝,等. 陆相页岩气水平井钻井提速技术[J]. 非常规油气,2017,4(4):88–92, 87. doi: 10.3969/j.issn.2095-8471.2017.04.014

    MA Zhenfeng, YU Xiaolong, YANG Quanzhi, et al. The technology of improving rate of penetration in continental shale gas horizontal well[J]. Unconventional Oil & Gas, 2017, 4(4): 88–92, 87. doi: 10.3969/j.issn.2095-8471.2017.04.014

    [8] 李淑森,王霞,高含. 苏里格气田水平井钻井提速技术分析与对策[J]. 钻采工艺,2012,35(5):115–117. doi: 10.3969/J.ISSN.1006-768X.2012.05.35

    LI Shusen, WANG Xia, GAO Han. Analysis and countermeasure of drilling speed of horizontal well in Sulige Gas Field[J]. Drilling & Production Technology, 2012, 35(5): 115–117. doi: 10.3969/J.ISSN.1006-768X.2012.05.35

    [9] 李瑞营,王峰,陈绍云,等. 大庆深层钻井提速技术[J]. 石油钻探技术,2015,43(1):38–43.

    LI Ruiying, WANG Feng, CHEN Shaoyun, et al. ROP improvement in deep formations in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 38–43.

    [10] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–40. doi: 10.11911/syztjs.2020036

    YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–40. doi: 10.11911/syztjs.2020036

    [11] 郑忠茂,刘天恩,周宝义,等. 浮力作用对大斜度井套管居中度的影响[J]. 石油钻采工艺,2017,39(3):313–318.

    ZHENG Zhongmao, LIU Tianen, ZHOU Baoyi, et al. Effect of buoyance on casing central degree of high angle deviated well[J]. Oil Drilling & Production Technology, 2017, 39(3): 313–318.

  • 期刊类型引用(23)

    1. 车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 . 百度学术
    2. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 . 百度学术
    3. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
    4. 宋周成,翟文宝,邓昌松,徐杨,徐席明,汪鑫,文涛. 富满油田超深井井身结构优化技术与应用. 钻采工艺. 2022(06): 36-41 . 百度学术
    5. 王涛,刘锋报,罗威,晏智航,陆海瑛,郭斌. 塔里木油田防漏堵漏技术进展与发展建议. 石油钻探技术. 2021(01): 28-33 . 本站查看
    6. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
    7. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 . 百度学术
    8. 张强,饶志华,秦世利,金勇. 南海东部深层古近系高效开发技术探索与实践. 石油化工应用. 2021(06): 34-38 . 百度学术
    9. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 . 百度学术
    10. 陈冬毅,徐鲲,张作伟,吕广,张鑫,郭小明. 恒压恒扭工具在渤海油田中的应用. 科学技术创新. 2021(22): 153-154 . 百度学术
    11. 严德,张玉山,宋玲安,陈彬,李彬,刘保波. 深水高温高压井钻井技术探索与实践. 中国石油和化工标准与质量. 2021(13): 193-194 . 百度学术
    12. 张喆,闫楚旋,冯震,脱直霖,石朝龙. 塔里木油田HLHT区块优快钻井技术研究. 云南化工. 2021(10): 127-129 . 百度学术
    13. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
    14. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    15. 张智亮,王威,伊明,刘强. 井下安全监控系统设计与实现. 石油钻探技术. 2020(06): 65-70 . 本站查看
    16. 周波,汪海阁,张富成,纪国栋,韩泽龙,武强. 温度压力对岩石可钻性和破岩效率影响实验. 石油钻采工艺. 2020(05): 547-552 . 百度学术
    17. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 . 百度学术
    18. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    19. 江波,任茂,王希勇. 彭州气田PZ115井钻井提速配套技术. 探矿工程(岩土钻掘工程). 2019(08): 73-78 . 百度学术
    20. 郑振国,黎红胜,赵海艳,温慧芸,孙东方. 哥伦比亚Matambo区块深井钻井关键技术. 石油钻探技术. 2018(02): 30-37 . 本站查看
    21. 丁红,宋朝晖,袁鑫伟,邢战,张宏阜,张仪. 哈拉哈塘超深定向井钻井技术. 石油钻探技术. 2018(04): 30-35 . 本站查看
    22. 李世昌,闫立鹏,李建冰,白文路,杨秀丽,闫天宇. 自循环粒子射流钻井提速工具机理研究. 中国锰业. 2018(03): 98-102 . 百度学术
    23. 陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 . 百度学术

    其他类型引用(7)

图(6)  /  表(1)
计量
  • 文章访问数:  843
  • HTML全文浏览量:  348
  • PDF下载量:  190
  • 被引次数: 30
出版历程
  • 收稿日期:  2021-02-16
  • 修回日期:  2021-06-11
  • 网络出版日期:  2020-12-13
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回