川西地区油基钻井液井壁强化技术

王星媛, 陆灯云, 袁志平

王星媛, 陆灯云, 袁志平. 川西地区油基钻井液井壁强化技术[J]. 石油钻探技术, 2021, 49(1): 34-40. DOI: 10.11911/syztjs.2020116
引用本文: 王星媛, 陆灯云, 袁志平. 川西地区油基钻井液井壁强化技术[J]. 石油钻探技术, 2021, 49(1): 34-40. DOI: 10.11911/syztjs.2020116
WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole Strengthening Technology with Oil-Based Drilling Fluid in the Western Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 34-40. DOI: 10.11911/syztjs.2020116
Citation: WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole Strengthening Technology with Oil-Based Drilling Fluid in the Western Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 34-40. DOI: 10.11911/syztjs.2020116

川西地区油基钻井液井壁强化技术

基金项目: 国家科技重大专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052)、川庆钻探工程有限公司钻采工程技术研究院科技项目“220 ℃抗高温高密度油基钻井液技术研究与应用”(编号:ZCY-19-01)联合资助
详细信息
    作者简介:

    王星媛(1989—),女,四川南充人,2011年毕业于西南石油大学应用化学专业,2014年获西南石油大学化学工程专业硕士学位,工程师,主要从事钻井液与完井液方面的技术研究工作。E-mail:wangxy_zcy@cnpc.com.cn

  • 中图分类号: TE254+.4

Borehole Strengthening Technology with Oil-Based Drilling Fluid in the Western Sichuan Basin

  • 摘要: 钻进川西地区深部地层时,井漏、井眼垮塌和卡钻问题频发,如采用油基钻井液钻进,则不易形成厚滤饼且滤饼致密性差,井筒压力穿透能力强。针对该问题,根据钻井液成膜机理,采用核壳结构设计,以苯乙烯、丙烯酸酯类等为原料,合成了一种适用于该地区深井钻井中地层温度≤150 ℃中部层位的致密膜护壁剂CQ-NFF;根据风险地层的地质特性、工程特性分析结果和d90规则,选用超细碳酸钙、弹性石墨、高强度树脂和高分散纤维复配形成了内充填封堵剂。采用扫描电镜分析了钻井液的成膜机理及形貌,通过高温高压滤失、高温渗透失水、高温渗透失油试验评价了钻井液的成膜效应,通过高温高压砂床滤失试验评价了充填材料的承压封堵能力。结果表明,CQ-NFF可在油包水乳状液和油基钻井液中形成致密薄膜,并有效吸附在滤饼表面,薄膜承压封堵能力达到2.0 MPa;将内填充封堵剂加入油基钻井液后,内滤饼的承压能力可提高至3.5 MPa以上。以上述处理剂为核心的川西地区油基钻井液井壁强化技术,在双探6井和中江2井进行了现场试验,深层井漏、井眼垮塌、卡钻等井下故障时间大幅缩短,试验效果显著。
    Abstract: Wellbore collapse, lost circulation and sticking frequently happen in deep formations when drilling in the western Sichuan Basin. When drilling with oil-based drilling fluids, it is difficult for a thick filter cake to form. Plus, the low density of the filter cake leads to high pressure penetration ability at the wellbore. To solve this problem, based on the mechanism of drilling fluid film forming, a wellbore protection agent with the compact film, CQ-NFF, was synthesized from styrene, acrylate and other raw materials using the core-shell structural design, which is suitable for the middle layer with a temperature no more than 150 °C in deep well drilling in the area. According to the analysis results of the geological characteristics and engineering characteristics of high-risk formations and the d90 rule, an inner-filling plugging agent was formed from ultra-fine grains of calcium carbonate, elastic graphite, high strength resin and highly dispersed fiber. The film-forming mechanism and morphology of drilling fluid were analyzed by scanning electron microscope (SEM). Film forming effects were evaluated in filtration tests under high temperature and high pressure along with water and oil loss tests during drilling penetration at high temperature. By means of the sand bed filtration experiments under high temperature and high pressure, the plugging capacity of the filling material was evaluated. Experimental results show that CQ-NFF can form a compact film in water-in-oil emulsion and oil-based drilling fluid, and the film can be adsorbed on the surface of the filter cake effectively. The pressure resisting and plugging capacity of the film can reach 2.0 MPa. After the inner-filling plugging agent was added to the oil-based drilling fluid, the pressure bearing capacity of the inner filter cake was increased to over 3.5 MPa. The borehole strengthening technology with oil-based drilling fluid, treating chemicals as the core, was applied in Well Shuangtan 6 and Well Zhongjiang 2. The results show a remarkable application effect that the downhole downtime due to lost circulation in deep formations, wellbore collapse or drill pipe sticking were greatly reduced.
  • 图  1   CQ-NFF的分子结构式

    Figure  1.   Molecular structure of CQ-NFF

    图  2   CQ-NFF颗粒粒径分布

    Figure  2.   Particle size distribution of CQ-NFF

    图  3   CQ-NFF在油包水乳状液中所形成膜的微观结构

    Figure  3.   Microstructure of the film formed by CQ-NFF in water-in-oil emulsion

    图  4   CQ-NFF在油基钻井液滤饼上的成膜效应

    Figure  4.   Film-forming effect of CQ-NFF on oil-based drilling fluid filter cake

    图  5   内充填封堵剂颗粒粒径分布

    Figure  5.   Particle size distribution of inner-filling plugging agent

    图  6   双探6井ϕ241.3和ϕ149.2 mm井段与邻井钻井数据对比

    Figure  6.   Comparison of drilling data of ϕ 241.3 mm and ϕ 149.2 mm sections in Well Shuangtan 6 and adjacent wells

    表  1   CQ-NFF在油包水乳状液中的成膜封堵效应评价结果

    Table  1   Evaluation results of the film-forming plugging effect of CQ-NFF in water-in-oil emulsion

    CQ-NFF加量,%高温高压
    滤失量/mL
    高温渗透
    失油量/mL
    高温渗透
    失水量/mL
    高温渗透失油最大
    承压能力/MPa
    高温渗透失水最大
    承压能力/MPa
    0 击穿击穿击穿0.5 MPa击穿0.5 MPa击穿
    1.05.5击穿击穿0.50.5 MPa击穿
    2.02.028.4击穿1.50.5
    3.02.413.627.01.50.5
    4.00.5 8.219.22.01.0
    下载: 导出CSV

    表  2   CQ-NFF对油基钻井液基本性能的影响

    Table  2   The effect of CQ-NFF on basic properties of oil-based drilling fluid

    CQ-NFF加量,%表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/Pa破乳电压/
    V
    高温高压
    滤失量/ mL
    滤饼厚度/
    mm
    高温渗透
    失水量/mL
    高温渗透
    失油量/mL
    初切终切
    0 706553.0 8.01 4187.01.5击穿击穿
    1.0756693.510.51 4670.21.537.44.6
    2.0938211 5.515.51 4170.21.528.23.4
    下载: 导出CSV

    表  3   内充填封堵剂对油基钻井液流变性的影响

    Table  3   Effect of inner-filling plugging agent on rheological properties of oil-based drilling fluid

    内充填封堵剂表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/Pa六速黏度计读数静切力/Pa破乳电压/V
    Φ6Φ3初切终切
    未加入60.054 6.0 5 43.5 7.0918
    加入95.58015.511107.016.5987
     注:内充填封堵剂的具体配方为3.0%400目超细碳酸钙+2.0%弹性石墨+1.0%高强度树脂+0.1%高分散纤维。下同。
    下载: 导出CSV

    表  4   内充填封堵剂承压封堵能力评价结果

    Table  4   Evaluation results of the pressure resisting and plugging capacity of the inner-filling plugging agent

    内充填封堵剂砂床滤失量/mL砂床强化后清水承压能力/MPa砂床强化后白油承压能力/MPa
    未加入14.8 0.5 0.5
    加入0 ≥3.5 ≥3.5
    下载: 导出CSV

    表  5   中江2井与川西火山岩层钻井故障情况对比

    Table  5   Comparison of the drilling failures of Well Zhongjiang 2 and volcanic layers in western Sichuan Basin

    井名火山岩岩性井下故障类型井下故障时间/h井下故障时间占比(同开次),%
    大深001-X1井凝灰岩、杏仁状玄武岩垮塌、卡钻导致侧钻1 034.9923.25
    大深001-X3井凝灰岩、杏仁状玄武岩垮塌、卡钻导致侧钻1 077.2538.69
    大深001-X4井凝灰岩、杏仁状玄武岩垮塌 239.5915.03
    莲探1井凝灰岩、杏仁状玄武岩垮塌、卡钻导致侧钻6 044.8590.93
    永探1井凝灰岩、灰绿岩、杏仁状玄武岩井漏、垮塌 80.48 2.73
    中江2井凝灰岩、杏仁状玄武岩 00
    下载: 导出CSV
  • [1] 伍贤柱,万夫磊,陈作,等. 四川盆地深层碳酸盐岩钻完井技术实践与展望[J]. 天然气工业,2020,40(2):97–105. doi: 10.3787/j.issn.1000-0976.2020.02.011

    WU Xianzhu, WAN Fulei, CHEN Zuo, et al. Drilling and completion technologies for deep carbonate rocks in the Sichuan Basin: practices and prospects[J]. Natural Gas Industry, 2020, 40(2): 97–105. doi: 10.3787/j.issn.1000-0976.2020.02.011

    [2] 万夫磊,唐梁,王贵刚. 川西双鱼石构造复杂深井安全快速钻井技术研究与实践[J]. 钻采工艺,2017,40(5):29–32. doi: 10.3969/J.ISSN.1006-768X.2017.05.09

    WAN Fulei, TANG Liang, WANG Guigang. Research and application of deep well drilling technique for Shuangyushi Structure in West Sichuan[J]. Drilling & Production Technology, 2017, 40(5): 29–32. doi: 10.3969/J.ISSN.1006-768X.2017.05.09

    [3] 王星媛,米光勇,王强. 川西南部沙湾组—峨眉山玄武岩井段井壁失稳机理分析及应对措施[J]. 钻井液与完井液,2018,35(6):55–59. doi: 10.3969/j.issn.1001-5620.2018.06.0010

    WANG Xingyuan, MI Guangyong, WANG Qiang. Borehole wall instability encountered in drilling the Shawan Formation-Emeishan Basalt Formation in Southwest Sichuan: mechanisms and countermeasures[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 55–59. doi: 10.3969/j.issn.1001-5620.2018.06.0010

    [4] 胡大梁,欧彪,郭治良,等. 川西二叠系超深风险井永胜1 井钻井关键技术[J]. 断块油气田,2019,26(4):524–528.

    HU Daliang, OU Biao, GUO Zhiliang, et al. Key drilling technology of Permian ultra-deep risk exploration well YS1 in western Sichuan[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 524–528.

    [5] 胡大梁,欧彪,何龙,等. 川西海相超深大斜度井井身结构优化及钻井配套技术[J]. 石油钻探技术,2020,48(3):22–28.

    HU Daliang, OU Biao, HE Long, et al. Casing program optimization and drilling matching technologies for marine ultra-deep highly deviated wells in western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22–28.

    [6] 邱正松,暴丹,李佳,等. 井壁强化机理与致密承压封堵钻井液技术新进展[J]. 钻井液与完井液,2018,35(4):1–6. doi: 10.3969/j.issn.1001-5620.2018.04.001

    QIU Zhengsong, BAO Dan, LI Jia, et al. Mechanisms of wellbore strengthening and new advances in lost circulation control with dense pressure bearing zone[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 1–6. doi: 10.3969/j.issn.1001-5620.2018.04.001

    [7] 卢小川,范白涛,赵忠举,等. 国外井壁强化技术的新进展[J]. 钻井液与完井液,2012,29(6):74–78. doi: 10.3969/j.issn.1001-5620.2012.06.023

    LU Xiaochuan, FAN Baitao, ZHAO Zhongju, et al. New research progress on wellbore strengthening technology[J]. Drilling Fluid & Completion Fluid, 2012, 29(6): 74–78. doi: 10.3969/j.issn.1001-5620.2012.06.023

    [8]

    van OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.

    [9]

    WANG Hong, SWEATMAN R E, ENGELMAN R, et al. Best practice in understanding and managing lost circulation challenges[J]. SPE Drilling & Completion, 2008, 23(2): 168–175.

    [10] 宋丁丁.井壁强化提高地层承压能力作用机理探讨[D].青岛: 中国石油大学(华东), 2016.

    SONG Dingding. Study on the mechanisms of wellbore strengthening to enhance formation pressure-bearing capacity[D]. Qingdao: China University of Petroleum (East China), 2016.

    [11] 孙金声, 蒲晓林.水基钻井液成膜理论与技术[M].北京: 石油工业出版社, 2013: 2.

    SUN Jinsheng, PU Xiaolin. Film forming theory and technology of water based drilling fluid[M]. Beijing: Petroleum Industry Press, 2013: 2.

    [12] 李浩.水基成膜钻井液体系的研究与应用[D].成都: 成都理工大学, 2010.

    LI Hao. Research and application of water-based film forming drilling fluid system[D]. Chengdu: Chengdu University Of Technology, 2010.

    [13] 匡绪兵. 具核结构的油基钻井液封堵剂的研制[J]. 钻井液与完井液,2015,32(5):15–18.

    KUANG Xubing. Development and evaluation of oil base mud plugging agent with nuclei[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 15–18.

    [14] 王伟,赵春花,罗健生,等. 抗高温油基钻井液封堵剂PF-MOSHIELD的研制与应用[J]. 钻井液与完井液,2019,36(2):153–159. doi: 10.3969/j.issn.1001-5620.2019.02.004

    WANG Wei, ZHAO Chunhua, LUO Jiansheng, et al. Development and application of the high temperature plugging agent PF-MOSHIELD for oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 153–159. doi: 10.3969/j.issn.1001-5620.2019.02.004

    [15] 邹娟,杨迅,尹宏,等. 九龙山—剑阁地区长兴组、飞仙关组礁、滩储层特征及控制因素研究[J]. 天然气勘探与开发,2014,37(4):1–6. doi: 10.3969/j.issn.1673-3177.2014.04.001

    ZOU Juan, YANG Xun, YIN Hong, et al. Characteristics of bioreef and shoal reservoirs in Changxing and Feixianguan formations of Jiulongshan-Jiange area and their controlling factors[J]. Natural Gas Exploration and Development, 2014, 37(4): 1–6. doi: 10.3969/j.issn.1673-3177.2014.04.001

    [16] 文龙,李亚,易海永,等. 四川盆地二叠系火山岩岩相与储层特征[J]. 天然气工业,2019,39(2):17–27. doi: 10.3787/j.issn.1000-0976.2019.02.003

    WEN Long, LI Ya, YI Haiyong, et al. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(2): 17–27. doi: 10.3787/j.issn.1000-0976.2019.02.003

    [17] 王欣欣.川西北中二叠统栖霞组、茅口组碳酸盐岩储层沉积学[D].成都: 成都理工大学, 2017.

    WANG Xinxin. Sedimentological research on the carbonate reservoir of Chihsia and Maokou formation in Northwest Sichuan[D]. Chengdu: Chengdu University of Technology, 2017.

    [18] 罗静,胡红,朱遂珲,等. 川西北地区下二叠统茅口组储层特征[J]. 海相油气地质,2013,18(3):39–47. doi: 10.3969/j.issn.1672-9854.2013.03.005

    LUO Jing, HU Hong, ZHU Suihui, et al. Characteristics of lower Permain Maokou reservoir in northwest of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2013, 18(3): 39–47. doi: 10.3969/j.issn.1672-9854.2013.03.005

    [19]

    HANDS N, KOWBEL K, MAIKRANZ S. Drilling-in fluid reduces formation damage and increase production rates[J]. Oil & Gas Journal, 1998, 96(28): 65–68.

    [20] 孙其诚,金峰. 颗粒物质的多尺度结构及其研究框架[J]. 物理,2009,38(4):225–232. doi: 10.3321/j.issn:0379-4148.2009.04.002

    SUN Qicheng, JIN Feng. The multiscale structure of granular matter and its mechanics[J]. Physics, 2009, 38(4): 225–232. doi: 10.3321/j.issn:0379-4148.2009.04.002

    [21] 孙其诚,王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报,2008,57(8):4667–4674. doi: 10.3321/j.issn:1000-3290.2008.08.007

    SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667–4674. doi: 10.3321/j.issn:1000-3290.2008.08.007

    [22] 陈平.颗粒介质压缩和剪切的可视化试验与分析[D].广州: 华南理工大学, 2014.

    CHEN Ping. Compression and shear of the visualization experiment and analysis in granular media[D]. Guangzhou: South China University of Technology, 2014.

  • 期刊类型引用(4)

    1. 王万江,李伟勤,刘昌岷,吴育涵. 井下表面电磁波协同中继传输方法. 石油钻探技术. 2024(04): 143-150 . 本站查看
    2. 王磊,窦修荣,滕鑫淼,刘珂,范锦辉. 气体钻井发电机涡轮设计与性能试验. 钻采工艺. 2023(06): 94-99 . 百度学术
    3. 江波,夏文鹤,严焱诚,王希勇,胡万俊,黄河淳. 气体钻井微波传输随钻监测系统软件设计. 电子技术应用. 2021(10): 90-94 . 百度学术
    4. 王庆,管志川,刘永旺,谢虹桥,张波,胜亚楠,赵国山. 气体钻井钻柱拉应力对纵波特性的影响. 石油机械. 2020(09): 1-7 . 百度学术

    其他类型引用(1)

图(6)  /  表(5)
计量
  • 文章访问数:  864
  • HTML全文浏览量:  280
  • PDF下载量:  147
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-08-15
  • 网络出版日期:  2020-10-18
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回