准噶尔盆地玛东油田水平井高性能油基钻井液技术

张雄, 余进, 毛俊, 刘祖磊

张雄, 余进, 毛俊, 刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术[J]. 石油钻探技术, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106
引用本文: 张雄, 余进, 毛俊, 刘祖磊. 准噶尔盆地玛东油田水平井高性能油基钻井液技术[J]. 石油钻探技术, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106
ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106
Citation: ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106

准噶尔盆地玛东油田水平井高性能油基钻井液技术

详细信息
    作者简介:

    张雄(1979—),男,湖北黄梅人,2003年毕业于江汉石油学院化学工程与工艺专业,高级政工师,主要从事项目管理工作。E-mail:89227198@qq.com

  • 中图分类号: TE254+.3

High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin

  • 摘要: 准噶尔盆地玛东油田水平井造斜段和水平段存在因泥岩水化、压力异常和砂砾层多而造成的起下钻阻卡、井眼失稳和机械钻速低等问题,为此开展了高性能油基钻井液技术研究。根据玛东油田的储层特征和中长水平段的钻进要求,配制了XZ高性能油基钻井液,并通过室内试验评价了其加重、抗高温、提切、封堵承压、抗污染和抗冻等性能。试验结果显示:该油基钻井液密度在1.35~2.01 kg/L时流变性能稳定、切力可调;热、冻稳定性好,低温可至–24 ℃,高温可达180 ℃;乳化稳定性好,破乳电压普遍在1 000 V以上;抗污染能力强,可抗20%钻屑、20%地层水和10%水泥的污染;封堵能力强,分别采用孔径为120和150 μm的砂盘进行承压封堵时,承压均可达15 MPa。该钻井液在玛东油田4口井进行了应用,钻井过程中井眼稳定,造斜段井径扩大率仅3.55%,起下钻顺利,平均机械钻速较同层位水基钻井液提高79%,取得了显著的提速效果。研究结果表明,采用XZ高性能油基钻井液可以解决玛东油田砂砾岩储层水平井钻井中存在的问题,满足该油田长水平段安全快速钻井需求。
    Abstract: The build-up section and horizontal section drilling in horizontal wells of the Madong Oilfield, Junggar Basin was challenged by problems such as pipe-string sticking during trip operations, wellbore instability, and low ROP caused by the hydration of mudstone, abnormal pressure, and an abundance of glutenites. Therefore, high-performance oil-based drilling fluid was accordingly investigated. Based on the reservoir characteristics of the Madong Oilfield and the drilling requirements of the medium-long horizontal sections, XZ high-performance oil-based drilling fluid was hereby formulated, and indoor laboratory experiments were carried out to evaluate its weighting, temperature resistance, shear strength improving, sealing/pressure-bearing, anti-pollution and anti-freezing performances. The results showed that this oil-based drilling fluid system exhibited stable rheological properties and an adjustable shear force between the density of 1.35–2.01 kg/L. The new fluid exhibited good thermal and freezing stability, low temperature resistance of up to –24 ℃, and high temperature resistance of up to 180 ℃. The emulsification stability was good, and the demulsification voltage was generally above 1 000 V. The anti-pollution ability was strong, the anti-cuttings pollution concentration was ≥20.0%, the anti-formation water pollution concentration was ≥20.0%, and the anti-cement pollution concentration was ≥10.0%. Further, the new drilling fluid system had strong sealing ability. When using sand discs with a diameter of 120 and 150 μm for pressure-bearing sealing, the pressure-resistance of both discs could reach 15 MPa. This system was applied in 4 of the wells in the Madong Oilfield. After the application of the new fluid, perfect borehole stability was achieved, the hole enlargement rate of the build-up section was only 3.55%, the trip operation was completed smoothly, and the average ROP was 79.0% higher than that of the same horizon drilled with water-based drilling fluid. A remarkable drilling speed-up effect was observed. The research results showed that the application of XZ high-performance oil-based drilling fluid can solve the technical problems in the development of the glutenite reservoirs in the Madong Oilfield and satisfy the needs of safe and fast drilling in the long horizontal section of this oilfield.
  • 图  1   XZ高性能油基钻井液抗岩屑污染评价结果

    Figure  1.   Evaluation of cuttings pollution resistant of XZ high-performance oil-based drilling fluid

    图  2   XZ高性能油基钻井液抗地层水污染性能评价结果

    Figure  2.   Evaluation of formation water pollution resistance of XZ high-performance oil-based drilling fluid

    图  3   XZ高性能油基钻井液抗水泥污染性能评价结果

    Figure  3.   Evaluation of cement pollution resistance of XZ high-performance oil-based drilling fluid

    表  1   XZ高性能油基钻井液的加重性能评价结果

    Table  1   Evaluation of the weighting performance of XZ high- performance oil-based drilling fluid

    密度/
    (kg·L–1
    试验条件表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/Pa静切力/Pa高温高压
    滤失量/mL
    破乳电压/
    V
    初切终切
    1.35老化前30.024.06.03.07.01 022
    老化后31.025.06.03.56.62.21 132
    1.55老化前37.030.07.02.05.01 103
    老化后38.030.08.03.05.02.41 308
    1.80老化前50.042.08.03.05.01 054
    老化后51.042.09.03.07.02.41 277
    2.01老化前60.551.09.54.07.0 874
    老化后63.054.09.04.57.02.81 067
     注:老化条件为120 ℃×16 h,流变性测试温度为50 ℃,高温高压滤失量的测试温度为老化温度。
    下载: 导出CSV

    表  2   XZ高性能油基钻井液的抗高温性能评价结果

    Table  2   Evaluation of temperature resistance performance of XZ high-performance oil-based drilling fluid

    老化温度/
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/Pa高温高压
    滤失量/mL
    破乳电压/
    V
    初切终切
    12038.030.08.03.06.02.41 350
    15039.030.09.03.07.02.81 312
    18041.032.09.03.08.03.41 098
     注:老化时间为16 h,流变性能的测试温度为50 ℃,高温高压滤失量的测试温度为老化温度。
    下载: 导出CSV

    表  3   XZ高性能油基钻井液的提切性能评价结果

    Table  3   Evaluation of shear strength improving performance of XZ high-performance oil-based drilling fluid

    配方试验条件表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/Pa静切力/Pa高温高压滤失量/
    mL
    破乳电压/V
    初切终切
    基浆老化前28.525.03.51.04.51 455
    老化16 h30.529.01.52.06.52.61 530
    老化72 h29.527.02.52.04.52.81 490
    基浆+0.5%
    提切剂
    老化前33.528.05.53.06.01 611
    老化16 h32.026.06.03.58.02.41 900
    老化72 h34.028.06.04.08.02.61 950
     注:基浆为没有加提切剂的XZ高性能油基钻井液;老化温度为120 ℃,流变性能的测试温度为50 ℃,高温高压滤失量的测试温度为老化温度。
    下载: 导出CSV

    表  4   未加防漏承压材料XZ高性能油基钻井液的封堵承压性能评价结果

    Table  4   Evaluation of the sealing and pressure bearing performance of XZ high-performance oil-based drilling fluid free of anti-leakage/pressure-bearing additives

    时间/min不同孔径砂盘的高温高压滤失量/mL不同孔径砂盘的承压能力/MPa
    20 μm40 μm55 μm120 μm150 μm20 μm40 μm55 μm120 μm150 μm
    1.00.20.20.2 39.2全滤失15.015.015.03.00
    2.50.20.20.2 72.815.015.015.03.8
    5.00.20.20.3 75.415.015.015.04.5
    7.50.20.30.3 86.215.015.015.05.0
    15.00.30.30.3110.615.015.015.06.8
    25.00.30.30.3131.015.015.015.05.5
    30.00.30.30.3166.415.015.015.08.0
    40.00.30.30.3178.015.015.015.07.8
    50.00.30.30.3201.215.015.015.08.8
    60.00.30.30.3231.015.015.015.09.0
     注:老化条件为120 ℃×16 h,流变性测试温度为50 ℃,高温高压滤失量测试温度为老化温度。
    下载: 导出CSV

    表  5   加入防漏承压材料后XZ高性能油基钻井液的封堵承压性能评价结果

    Table  5   Evaluation of sealing and pressure bearing performance of XZ high-performance oil-based drilling fluid after adding anti-leakage/pressure-bearing additives

    时间/min不同孔径砂盘的高温高压滤失量/mL不同孔径砂盘的承压能力/MPa
    20 μm40 μm55 μm120 μm150 μm20 μm40 μm55 μm120 μm150 μm
    1.00.10.10.12.4 1.615.015.015.013.5 8.0
    2.50.10.10.13.0 4.415.015.015.015.013.5
    5.00.10.10.13.410.215.015.015.015.013.5
    7.50.10.10.13.418.815.015.015.015.015.0
    15.00.10.10.13.420.215.015.015.015.015.0
    25.00.10.10.13.420.815.015.015.015.015.0
    30.00.10.10.13.421.015.015.015.015.015.0
    40.00.10.10.13.423.015.015.015.015.015.0
    50.00.10.10.13.425.815.015.015.015.015.0
    60.00.10.20.23.426.815.015.015.015.015.0
     注:老化条件为120 ℃×16 h,流变性测试温度为50 ℃,高温高压滤失量测试温度为老化温度。
    下载: 导出CSV

    表  6   XZ高性能油基钻井液抗低温性能评价结果

    Table  6   Evaluation of low temperature resistance performance of XZ high-performance oil-based drilling fluid

    温度/℃试验条件表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/Pa静切力/Pa高温高压
    滤失量/mL
    破乳电压/
    V
    初切终切
    120老化前 37.0 30.07.03.06.01 018
    老化16 h后 39.5 32.07.53.56.02.2 985
    –24冷冻72 h,0 ℃测125.0120.05.05.07.51.8 869
    冷冻72 h,50 ℃测 45.0 36.09.04.07.01.81 243
     注:高温高压滤失量测试温度为120 ℃。
    下载: 导出CSV

    表  7   4口应用井XZ高性能油基钻井液基本性能

    Table  7   Performance statistics of XZ high-performance oil-based drilling fluids in 4 wells of 2 platforms

    井号密度/(kg·L–1漏斗黏度/s塑性黏度/
    (mPa·s)
    动切力/Pa静切力/Pa高温高压
    滤失量/mL
    破乳电压/Vϕ6读数
    初切终切
    MDHW21071.50~1.5552.0~68.025.0~30.04.0~9.0 1.0~4.04.0~10.01.2~1.81120~2047 4~7
    MDHW21141.50~1.5558.0~70.025.0~29.06.0~10.01.0~3.04.0~11.01.6~2.01350~2047 5~7
    MDHW21081.50~1.5558.0~64.026.0~34.08.0~12.02.0~3.57.0~12.01.4~2.0610~20473~7
    MDHW21091.50~1.5568.0~76.026.0~32.07.0~11.02.0~3.08.0~12.00.5~1.2936~20473~7
     注:高温高压滤失量测试温度为120 ℃。
    下载: 导出CSV

    表  8   XZ高性能油基钻井液与常规水基钻井液现场应用效果对比

    Table  8   Comparison on the application effects of XZ high-performance oil-based drilling fluid and the conventional water-based drilling fluids

    钻井液机械钻速/(m·h–1)钻井周期/d
    造斜段水平段
    常规水基钻井液1.933.7565.5
    XZ高性能油基钻井液3.307.0238.0
    下载: 导出CSV
  • [1] 路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(2): 9–14.

    LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14.

    [2] 秦文政,党军,臧传贞,等. 玛湖油田玛18井区“工厂化”水平井钻井技术[J]. 石油钻探技术, 2019, 47(2): 15–20.

    QIN Wenzheng, DANG Jun, ZANG Chuanzhen, et al. Factorization drilling technology of the horizontal well in the Ma18 well block of the Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 15–20.

    [3] 王海涛,张伟,王国斌,等. 准噶尔盆地环玛湖凹陷钻井提速技术[J]. 石油钻采工艺, 2014, 36(4): 30–33.

    WANG Haitao, ZHANG Wei, WANG Guobin, et al. ROP enhancing technology for circum-mahu lake depression in Junggar Basin[J]. Oil Drilling & Production Technology, 2014, 36(4): 30–33.

    [4] 李洪,邹灵战,汪海阁,等. 玛湖致密砂砾岩2 000 m水平段水平井优快钻完井技术[J]. 石油钻采工艺, 2017, 39(1): 47–52.

    LI Hong, ZOU Lingzhan, WANG Haige, et al. High-quality fast drilling and completion technologies for horizontal wells with horizontal section of 2 000 m long in Mahu tight glutenites[J]. Oil Drilling & Production Technology, 2017, 39(1): 47–52.

    [5] 于洋飞,杨光,陈涛,等. 新疆玛湖区块2 000 m长水平段水平井钻井技术[J]. 断块油气田, 2017, 24(5): 727–730.

    YU Yangfei, YANG Guang, CHEN Tao, et al. Drilling technology of 2 km-long horizontal section in Mahu Block, Xinjiang Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 727–730.

    [6] 谢军,何勇,王安鹤,等. 克拉玛依油田八区调整井钻井液技术[J]. 钻井液与完井液, 2007, 24(1): 88–91.

    XIE Jun, HE Yong, WANG Anhe, et al. Drilling fluid technology used in drilling adjustment wells in Block 8 in Karamay Oilfield[J]. Drilling Fluid & Completion Fluid, 2007, 24(1): 88–91.

    [7] 吴江,李龙,任冠龙,等. 海上复杂易垮塌地层高性能油基钻井液研发与应用[J]. 钻井液与完井液, 2018, 35(5): 55–60.

    WU Jiang, LI Long, REN Guanlong, et al. Development and application of a high performance oil base drilling fluid for drilling complex sloughing formations in offshore operations[J]. Drilling Fluid & Completion Fluid, 2018, 35(5): 55–60.

    [8] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术, 2019, 47(3): 95–102.

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102.

    [9] 何振奎. 泌页 HF1井油基钻井液技术[J]. 石油钻探技术, 2012, 40(4): 32–37.

    HE Zhenkui. Oil base drilling fluid technology applied in Well Biye HF 1[J]. Petroleum Drilling Techniques, 2012, 40(4): 32–37.

    [10] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术, 2014, 42(4): 7–13.

    LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.

    [11] 王显光,李雄,林永学. 页岩水平井用高性能油基钻井液研究与应用[J]. 石油钻探技术, 2013, 41(2): 17–22.

    WANG Xianguang, LI Xiong, LIN Yongxue. Research and application of high performance oil base drilling fluid for shale horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 17–22.

  • 期刊类型引用(1)

    1. 高凯歌,赵超杰,闫柯乐,靳彦欣,樊朝斌,苗智瑜,刘铭刚,葛鹏飞. 气井钻井四通材料冲蚀行为研究及性能优选. 断块油气田. 2025(01): 165-169 . 百度学术

    其他类型引用(0)

图(3)  /  表(8)
计量
  • 文章访问数:  738
  • HTML全文浏览量:  260
  • PDF下载量:  100
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-08-04
  • 网络出版日期:  2020-09-08
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回