基于石墨烯修饰的超低渗透成膜剂制备及性能评价

王伟吉

王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价[J]. 石油钻探技术, 2021, 49(1): 59-66. DOI: 10.11911/syztjs.2020104
引用本文: 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价[J]. 石油钻探技术, 2021, 49(1): 59-66. DOI: 10.11911/syztjs.2020104
WANG Weiji. Preparation and Performance Evaluations of an Ultra-low Permeability Film-Forming Agent Based on Graphene Modification[J]. Petroleum Drilling Techniques, 2021, 49(1): 59-66. DOI: 10.11911/syztjs.2020104
Citation: WANG Weiji. Preparation and Performance Evaluations of an Ultra-low Permeability Film-Forming Agent Based on Graphene Modification[J]. Petroleum Drilling Techniques, 2021, 49(1): 59-66. DOI: 10.11911/syztjs.2020104

基于石墨烯修饰的超低渗透成膜剂制备及性能评价

基金项目: 国家科技重大专项课题“海相碳酸盐岩超深油井关键工程技术”(编号:2017ZX05005-005)资助
详细信息
    作者简介:

    王伟吉(1987—),男,山东烟台人,2011年毕业于中国石油大学(华东)石油工程专业,2017年获中国石油大学(华东)油气井工程专业博士学位,工程师,主要从事钻井液技术研究相关工作。E-mail:wangwj.sripe@sinopec.com

  • 中图分类号: 254+.4

Preparation and Performance Evaluations of an Ultra-low Permeability Film-Forming Agent Based on Graphene Modification

  • 摘要: 为阻止钻井液滤液进入地层,维持井壁稳定、保护储层,采用改进的Hummers方法对石墨烯表面进行活化处理,引入羧基、羟基、环氧基等活性基团,与优选的单体在活化石墨烯表面接枝聚合,制备了一种基于石墨烯修饰的超低渗透成膜剂SMSL。采用红外光谱仪、元素分析仪、原子力显微镜、同步热分析仪等分析了超低渗透成膜剂SMSL的分子结构、微观形貌特征及其分散状态。采用压力传递试验、岩石自渗吸试验和电镜扫描等评价了超低渗透成膜剂SMS的致密成膜封堵特性,并评价了超低渗透成膜剂SMSL与水基钻井液的配伍性。评价结果表明,超低渗透成膜剂SMSL的分子结构达到了设计要求,可显著降低岩石的压力传递及自渗吸作用,与高效聚合物成膜剂相比其页岩成膜效率提高162.96%,致密砂岩自渗吸能力降低88.74%,与水基钻井液的配伍性较好。研究结果表明,钻井液中加入超低渗透成膜剂SMSL,可在井壁上形成致密膜,能够阻止钻井液滤液进入地层,维持井壁稳定和保护储层。
    Abstract: In order to prevent the drilling fluid filtrate from entering the formation, to maintain the wellbore stability and to protect the reservoir, a procedure to activate a graphene surface was conducted by using a modified Hummers method. It introduced carboxyl, hydroxyl, epoxy groups and other active groups, resulting in a kind of graphene modified film-forming agent SMSL with ultra-low permeability. It was prepared by grafting copolymerization with selected monomers on the surface of active graphene. The molecular structure, micro morphology and dispersive state of SMSL were analyzed by the infrared spectrometer, the element analyzer, the atomic force microscope and the synchronous thermal analyzer. Researchers used pressure transfer tests, core self-seepage tests and SEM to evaluate the dense film-forming plugging characteristics of SMSL and the compatibility of SMSL with the water-based drilling fluid. The results showed that the molecular structure of SMSL met the design requirements, and it could significantly reduce the pressure transfer and self-seepage effect of rocks. Specifically, the shale film-forming efficiency was 162.96% higher than that of the conventional polymer film-forming agent, the self-seepage capacity of tight sandstone was decreased by 88.74%, with very good compatibility with the water-based drilling fluid. The research indicated that when SMSL was added into the drilling fluid, a dense film can form on the wellbore to prevent the filtrate from entering the formation and thus can maintain wellbore stability and protect the reservoir.
  • 图  1   活化石墨烯结构示意

    Figure  1.   Schematic diagram of active graphene structure

    图  2   活化石墨烯和超低渗透成膜剂SMSL的红外光谱

    Figure  2.   Infrared spectrum of active graphene and film-forming agent SMSL with ultra-low permeability

    图  3   活化石墨烯的原子力显微镜观察结果

    Figure  3.   Observation result by atom force microscope(AFM) of active graphene

    图  4   不同聚合物的热失重曲线

    Figure  4.   Thermal gravimetric curves of different polymers

    图  5   压力传递测试装置示意

    Figure  5.   Schematic diagram of pressure transfer test apparatus

    图  6   压力传递试验结果

    Figure  6.   Test results of pressure transfer test

    图  7   岩心自发渗吸装置示意

    1.可动钢化玻璃板;2.天平挂钩;3.天平托盘;4.精密电子天平;5.防风罩;6.数据传输线;7.计算机数据接收装置;9.试液容器;8.精密升降台;10.岩心夹持器

    Figure  7.   Schematic diagram of a device for a core self-seepage test

    图  8   岩心自渗吸试验结果

    Figure  8.   Test results of core self-seepage tests

    图  9   环境扫描电镜观测的SMSL在API滤失滤饼中的存在形态

    Figure  9.   The morphology of SMSL in API filter cake observed by environmental SEM

    图  10   扫描电镜观测的页岩封堵端面的微观形貌特征

    Figure  10.   The micro-morphological characteristics of shale plugging surface observed by SEM

    表  1   页岩在不同流体下的渗透率和膜效率

    Table  1   Permeability and membrane efficiency of shale under different fluids

    测试流体渗透率/10–4mD膜效率
    4%NaCl水溶液3.7200.074
    4%NaCl + 2%LSF0.7560.108
    4%NaCl + 2%SMNF0.4860.167
    4%NaCl + 2%SMSL0.3020.284
    4%NaCl + 2%SMSL + 2%SMNF0.0350.392
    下载: 导出CSV

    表  2   钻井液性能测试结果

    Table  2   Test results of drilling fluid properties

    密度/(kg·L–1条件表观黏度/(mPa·s)塑性黏度/(mPa·s)动切力/Pa静切力/PaAPI滤失量/mL高温高压滤失量/mL
    1.8加入前38.026.012.02.5/5.54.010.4
    加入后35.023.012.02.5/5.03.28.2
    2.0加入前36.026.013.03.0/5.53.89.6
    加入后36.024.012.02.5/6.02.88.0
    2.2加入前42.029.013.04.0/7.53.810.0
    加入后44.029.015.03.5/7.02.67.4
    下载: 导出CSV
  • [1] 位云生,贾爱林,何东博,等. 中国页岩气与致密气开发特征与开发技术异同[J]. 天然气工业,2017,37(11):43–52.

    WEI Yunsheng, JIA Ailin, HE Dongbo, et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China[J]. Natural Gas Industry, 2017, 37(11): 43–52.

    [2] 高树生,刘华勋,叶礼友,等. 致密砂岩气藏井网密度优化与采收率评价新方法[J]. 天然气工业,2019,39(8):58–65.

    GAO Shusheng, LIU Huaxun, YE Liyou, et al. A new method for well pattern density optimization and recovery factor evaluation of tight sandstone gas reservoirs[J]. Natural Gas Industry, 2019, 39(8): 58–65.

    [3] 于雷,张敬辉,刘宝锋,等. 微裂缝发育泥页岩地层井壁稳定技术研究与应用[J]. 石油钻探技术,2017,45(3):27–31.

    YU Lei, ZHANG Jinghui, LIU Baofeng, et al. Study and application of borehole stabilization technology in shale strata containing micro-fractures[J]. Petroleum Drilling Techniques, 2017, 45(3): 27–31.

    [4] 侯杰. 硬脆性泥页岩微米-纳米级裂缝封堵评价新方法[J]. 石油钻探技术,2017,45(3):32–37.

    HOU Jie. A new method of plugging micro/Nano meter cracks in hard, brittle shale[J]. Petroleum Drilling Techniques, 2017, 45(3): 32–37.

    [5] 路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术,2019,47(1):1–7.

    LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7.

    [6] 董兵强,邱正松,陆朝晖,等. 临兴区块致密砂岩气储层损害机理及钻井液优化[J]. 钻井液与完井液,2018,35(6):65–70.

    DONG Bingqiang, QIU Zhengsong, LU Zhaohui, et al. Damage mechanisms determination for tight sands gas reservoir in Block Linxing and drill-in fluid optimization for protection of the reservoir[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 65–70.

    [7] 朱杰,熊汉桥,吴若宁,等. 裂缝性气藏成膜堵气钻井液体系室内评价研究[J]. 石油钻采工艺,2019,41(2):147–151.

    ZHU Jie, XIONG Hanqiao, WU Ruoning, et al. Laboratory research of sealing and gas-plugging drilling fluid system in fractured gas reservoir[J]. Oil Drilling & Production Technology, 2019, 41(2): 147–151.

    [8] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field [J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.

    [9] 王伟吉,邱正松,暴丹,等. 温压成膜封堵技术研究及应用[J]. 特种油气藏,2015,22(1):144–147.

    WANG Weiji, QIU Zhengsong, BAO Dan, et al. Warm-compaction film-forming plugging and its application[J]. Special Oil & Gas Reservoirs, 2015, 22(1): 144–147.

    [10] 蒋官澄,毛蕴才,周宝义,等. 暂堵型保护油气层钻井液技术研究进展与发展趋势[J]. 钻井液与完井液,2018,35(2):1–16.

    JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al. Progress made and trend of development in studying on reservoir protection drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 1–16.

    [11] 张汝生,王增宝,赵梦云,等. 助破胶胶囊型压裂屏蔽暂堵保护剂的制备与性能评价[J]. 油田化学,2019,36(2):225–229.

    ZHANG Rusheng, WANG Zengbao, ZHAO Mengyun, et al. Preparation and performance evaluation of helper-breaking capsule type shielding temporary plugging protection agent in fracturing[J]. Oilfield Chemistry, 2019, 36(2): 225–229.

    [12] 樊玮,张超,刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报,2013,30(1):14–21.

    FAN Wei, ZHANG Chao, LIU Tianxi. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 14–21.

    [13] 许明路,何小芳,贺超峰,等. 石墨烯/聚合物复合材料的研究进展[J]. 塑料工业,2016,44(2):27–33.

    XU Minglu, HE Xiaofang, HE Chaofeng, et al. Research progress in graphene/polymer composites[J]. China Plastics Industry, 2016, 44(2): 27–33.

    [14] 耿黎东,王敏生,蒋海军,等. 石墨烯在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2019,47(5):80–85.

    GENG Lidong, WANG Minsheng, JIANG Haijun, et al. The status of the development of graphene applications in petroleum engineering[J]. Petroleum Drilling Techniques, 2019, 47(5): 80–85.

    [15]

    WANG Han, XIE Guiyuan, YING Zhe, et al. Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films[J]. Journal of Materials Science & Technology, 2015, 31(4): 340–344.

    [16]

    JAN R, HABIB A, ABBASSI H, et al. Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites[J]. Electronic Materials Letters, 2015, 11(2): 225–231. doi: 10.1007/s13391-014-4265-5

    [17]

    HUMMERS W S Jr, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of American Chemical Society, 1958, 80(6): 1339. doi: 10.1021/ja01539a017

    [18]

    LEE K Y, BYEON H H, JANG C, et al. Hydrodynamic assembly of conductive nanomesh of single-walled Carbon nanotubes using biological glue[J]. Advanced Materials, 2015, 27(5): 922–928. doi: 10.1002/adma.201404483

    [19] 尹俊强,张伟超. 石墨烯纳米片/聚乙烯复合薄膜电磁干扰屏蔽[J]. 复合材料学报,2019,36(2):293–303.

    YIN Junqiang, ZHANG Weichao. Electromagnetic interference shielding performance of graphene/nanosheetpolyethylene composite films[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 293–303.

    [20] 王中华. 超高温钻井液体系研究(Ⅰ):抗高温钻井液处理剂设计思路[J]. 石油钻探技术,2009,37(3):1–7.

    WANG Zhonghua. Studies on ultra-high-temperature drilling fluid system (1): design Ultra-High-Temperature drilling fluid additives[J]. Petroleum Drilling Techniques, 2009, 37(3): 1–7.

    [21]

    COLEMAN J N. Liquid exfoliation of defect-free graphene[J]. Accounts of Chemical Research, 2013, 46(1): 14–22. doi: 10.1021/ar300009f

    [22]

    KUMARI S, PANIGRAHI A, SINGH S K, et al. Enhanced corrosion resistance and mechanical properties of nanostructured graphene-polymer composite coating on Copper by electrophoretic deposition[J]. Journal of Coatings Technology Research, 2018, 15(3): 583–592. doi: 10.1007/s11998-017-0001-z

    [23]

    NOH M J, OH M J, CHOI J H, et al. Layer-by-layer assembled multilayers of charged polyurethane and graphene oxide platelets for flexible and stretchable gas barrier films[J]. Soft Matter, 2018, 14(32): 6708–6715. doi: 10.1039/C8SM00706C

    [24]

    VUCAJ N, QUINN M J, BAECHLER C, et al. Vapor phase synthesis of conducting polymer nanocomposites incorporating 2D nanoparticles[J]. Chemistry of Materials, 2014, 26(14): 4207–4213. doi: 10.1021/cm5014653

    [25]

    BOLAND C S, KHAN U, RYAN G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J]. Science, 2016, 354(6317): 1257–1260. doi: 10.1126/science.aag2879

    [26]

    DIVIGALPITIYA R, BAULD R, BAZYLEWSKI P, et al. Thermo-optical characterization and thermal properties of graphene-polymer composites: a review[J]. Journal of Materials Chemistry C, 2018, 6(12): 2901–2914. doi: 10.1039/C7TC01719G

  • 期刊类型引用(1)

    1. 潘冠昌,杨斌,张浩,常坤,冯云辉. 超深层碳酸盐岩裂缝面形态与摩擦因数研究. 断块油气田. 2022(06): 794-799 . 百度学术

    其他类型引用(4)

图(11)  /  表(2)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  207
  • PDF下载量:  78
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-02-10
  • 修回日期:  2020-07-07
  • 网络出版日期:  2020-10-28
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回