Research on Stratum Settlement and Wellhead Stability in Deep Water during Hydrate Production Testing
-
摘要: 在深水非成岩地层天然气水合物试采过程中,随着试采时间增长,大面积弱固结地层中的水合物分解后,可能造成海底地层沉降,损坏井口和海底管汇,导致试采工程失败。为此,建立了非成岩地层水合物试采过程中的海底地层沉降和井口稳定性分析模型,分析认为水合物分解后产生的负摩阻力和下拉载荷是导致井口失稳的主要因素,并采用有限元强度折减法模拟研究了水合物分解对地层沉降和井口稳定性的影响,结果发现,水合物分解后管柱周围的负摩阻力主要分布于表层导管底部向上约1/3的区域,且水合物分解半径越大、水合物饱和度越高,负摩阻力越大。自主研发了天然气水合物开采井口模拟试验装置,进行了水合物分解对井口稳定性影响的室内模拟试验,负摩阻力的模拟试验结果与数值模拟结果相比,相对误差在10%以内,验证了计算模型和数值模拟结果的可靠性。研究成果可为深水非成岩地层水合物试采时间控制和井口安全评估提供理论参考。Abstract: During hydrate production testing in deep-water non-diagenetically altered formations, subsea stratum settlement may occur after the decomposition of gas hydrate in a large area of weakly consolidated formation accompanied by an increase of production test time, resulting in wellhead and subsea manifold damage as well as the failure of the production testing project. To solve this problem, an analytical model of subsea stratum settlement and wellhead stability in non-diagenetically altered formations during hydrate production testing was established. Negative friction and drop-down load produced by hydrate decomposition were considered to be the main factors leading to wellhead instability, and the finite element strength reduction method was used to simulate the influence of hydrate decomposition on stratum settlement and wellhead stability. The results showed that the negative friction resistance around the pipe string after hydrate decomposition was mainly distributed in the area about 1/3 the length of conductor above the bottom, and the larger the hydrate decomposition radius, the higher the hydrate saturation, and the greater the negative friction resistance. The laboratory simulation test was carried out to explore the influence of hydrate decomposition on wellhead stability by means of the self-developed wellhead simulation device for gas hydrate production. The results showed that the relative error between the test result and simulation result of negative friction resistance was less than 10%, which verified the reliability of the calculation model and numerical simulation results. The research results can provide a theoretical reference for the time control and wellhead safety assessment of hydrate production test in deep water non-diagenetic formations.
-
Keywords:
- deep water /
- gas hydrate /
- hydrate production test /
- stratum settlement /
- wellhead stability /
- simulation test
-
-
表 1 反应釜内温度和压力的变化情况
Table 1 Variation of temperature and pressure in the reactor
测量参数 反应釜内平均
压力/MPa反应釜内平均
温度/℃水合物
饱和度,%水合物生成前 9.1 18.2 水合物生成后 7.6 6.4 32.4 -
[1] 周守为,李清平,吕鑫,等. 天然气水合物开发研究方向的思考与建议[J]. 中国海上油气, 2019, 31(4): 1–8. ZHOU Shouwei, LI Qingping, LYU Xin, et al. Thinking and suggestions on research direction of natural gas hydrate development [J]. China Offshore Oil and Gas, 2019, 31(4): 1–8.
[2] 李文龙,高德利,杨进. 海域含天然气水合物地层钻完井面临的挑战及展望[J]. 石油钻采工艺, 2019, 41(6): 681–689. LI Wenlong, GAO Deli, YANG Jin. Challenges and prospect of the drilling and completion technologies used for the natural gas hydratereservoirs in sea areas[J]. Oil Drilling & Production Technology, 2019, 41(6): 681–689.
[3] 周守为,陈伟,李清平,等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4): 1–8. ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solidfluidization well testing and production for shallow non-diageneticnatural gas hydrate in deep water area[J]. China Offshore Oil and Gas, 2017, 29(4): 1–8.
[4] WANG Bin, HUO Peng, LUO Tingting, et al. Analysis of the physicalproperties of hydrate sediments recovered from the pearl river mouth basin in the south china sea: preliminary investigation for gas hydrate exploitation[J]. Energies, 2017, 10(4): 1–16.
[5] 宫智武,张亮,程海清,等. 海底天然气水合物分解对海洋钻井安全的影响[J]. 石油钻探技术, 2015, 43(4): 19–24. GONG Zhiwu, ZHANG Liang, CHENG Haiqing, et al. The influenceof subsea natural gas hydrate dissociation on the safety of offshoredrilling[J]. Petroleum Drilling Techniques, 2015, 43(4): 19–24.
[6] 付亚荣. 可燃冰研究现状及商业化开采瓶颈[J]. 石油钻采工艺, 2018, 40(1): 68–80. FU Yarong. Research status of combustible ice and the bottleneck of its commercial exploitation[J]. Oil Drilling & Production Technology, 2018, 40(1): 68–80.
[7] 李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨[J]. 石油钻探技术, 2019, 47(3): 127–132. doi: 10.11911/syztjs.2019064 LI Zifeng, HAN Jie. Discussion of environmental safety factors in subsea natural gas hydrate exploitation[J]. Petroleum Drilling Techniques, 2019, 47(3): 127–132. doi: 10.11911/syztjs.2019064
[8] 刘锋.南海北部陆坡天然气水合物分解引起的海底滑坡与环境风险评价[D].青岛: 中国科学院海洋研究所, 2010. LIU Feng. A safety evaluation for submarine slope instability of the Northern South China Sea due to gas hydrate dissociation[D]. Qingdao:Institute of Oceanology of Chinese Academy of Sciences, 2010.
[9] 施家杰, 张巍, 厉成阳, 等. 水合物分解诱发能源土滑坡的物质点法模拟[J]. 工程地质学报, 2019, 27(5): 1164–1171. SHI Jiajie, ZHANG Wei, LI Chengyang, et al. Simulation of energy soil landslide induced by hydrate dissociation using material point method[J]. Journal of Engineering Geology, 2019, 27(5): 1164–1171.
[10] NING Fulong, WU Nengyou, LI Shi, et al. Estimation of in-situ mechanical properties of gas hydrate-bearing sediments from well logging[J]. Petroleum Exploration and Development, 2013, 40(4): 542–547. doi: 10.1016/S1876-3804(13)60071-3
[11] LI Qingchao, CHENG Yuanfang, ZHANG Huaiwen, et al. Simulatingthe effect of hydrate dissociation on wellhead stability during oil and gas development in deepwater[J]. Journal of Ocean University of China, 2018, 17: 35–45. doi: 10.1007/s11802-018-3544-4
[12] 朱敬宇,陈国明,刘康,等. 深水水合物钻井导管下深设计与地层安全承载研究[J]. 石油钻采工艺, 2019, 41(6): 690–696. ZHU Jingyu, CHEN Guoming, LIU Kang, et al. The design on the setting depth of drilling conductor and the study on the safe bearing load of formation in deepwater hydrate exploitation[J]. Oil Drilling & Production Technology, 2019, 41(6): 690–696.
[13] 沈海超,程远方,胡晓庆. 天然气水合物藏降压开采近井储层稳定性数值模拟[J]. 石油钻探技术, 2012, 40(2): 76–81. doi: 10.3969/j.issn.1001-0890.2012.02.015 SHEN Haichao, CHENG Yuanfang, HU Xiaoqing. Numerical simulation of near wellbore reservoir stability during gas hydrate production by depressurization[J]. Petroleum Drilling Techniques, 2012, 40(2): 76–81. doi: 10.3969/j.issn.1001-0890.2012.02.015
[14] 刘昌岭,李彦龙,孙建业,等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12–26. LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12–26.
[15] 左汝强,李艺. 日本南海海槽天然气水合物取样调查与成功试采[J]. 探矿工程(岩土钻掘工程), 2017, 44(12): 1–20. ZUO Ruqiang, LI Yi. Japan’s sampling study and successful production test for NGH in Nankai Trough[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(12): 1–20.
[16] 张炜,邵明娟,田黔宁. 日本海域天然气水合物开发技术进展[J]. 石油钻探技术, 2017, 45(5): 98–102. ZHANG Wei, SHAO Mingjuan, TIAN Qianning. Technical progress of a pilot project to produce natural gas hydrate in Japanese waters[J]. Petroleum Drilling Techniques, 2017, 45(5): 98–102.
[17] 夏力农.负摩阻力基桩的理论研究与工程应用[M].北京: 地质出版社, 2011. XIA Linong. Theoretical research and engineering application of negative friction pile[M]. Beijing: Geological Publishing House, 2011.
[18] ZHOU Bo, YANG Jin, LIU Zhengli, et al. Model and experimental study on jetting flow rate for installing surface conductor in deep-water[J]. Applied Ocean Research, 2016, 60: 155–163. doi: 10.1016/j.apor.2016.09.008
[19] 周波,杨进,周建良,等. 深水喷射扰动对表层导管承载力的影响规律[J]. 中国海上油气, 2016, 28(1): 98–102. ZHOU Bo, YANG Jin, ZHOU Jianliang, et al. Pattern of influence of disturbance caused by jetting on bearing capacity of surface conductor in deep water zones[J]. China Offshore Oil and Gas, 2016, 28(1): 98–102.
[20] 徐春华,孙建波,徐学燕. 多年冻土地区工程桩竖向承载力三维数值分析[J]. 施工技术, 2011, 40(7): 50–53. XU Chunhua, SUN Jianbo, XU Xueyan. 3D numerical analysis of vertical bearing capacity of engineering pile in permafrost regions[J]. Construction Technology, 2011, 40(7): 50–53.
[21] 阮徐可.多孔介质中水合物开采影响因素的实验和数值模拟研究[D].大连: 大连理工大学, 2012. RUAN Xuke. Experimental and numerical study of the factors on the gas production from hydrate in porous media[D]. Dalian: Dalian University of Technology, 2012.
-
期刊类型引用(17)
1. 王大勇,马红滨,李欣龙,熊超,史怀忠,黄中伟,赫文豪. 高压水射流辅助锥形PDC齿破碎花岗岩试验研究. 石油机械. 2024(07): 36-44 . 百度学术
2. 王鸿远. 锥形与常规PDC齿混合布齿破岩机理研究及钻头研制. 石化技术. 2024(08): 389-391 . 百度学术
3. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 . 百度学术
4. 鲍伟伟,赵国辉,徐杨. 大港页岩油水平井优快钻井技术. 中国石油和化工标准与质量. 2023(12): 159-161 . 百度学术
5. 傅新康,黄中伟,史怀忠,吴洪志,何森林,熊超,赫文豪. 锥形齿与平面齿切削碳酸盐岩特征对比分析. 石油机械. 2023(07): 59-67 . 百度学术
6. 熊超,黄中伟,王立超,史怀忠,赫文豪,陈振良,李根生. 锥形聚晶金刚石复合片齿破岩特征与机制研究. 岩土力学. 2023(08): 2432-2444 . 百度学术
7. 徐建飞,陈晖,邹德永,黄勇. 高造斜率定向CDE钻头设计与应用. 机械设计与制造工程. 2023(09): 117-120 . 百度学术
8. 李彦操. PDC钻头齿的破岩机理和性能测试方法研究现状. 金刚石与磨料磨具工程. 2023(05): 553-567 . 百度学术
9. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看
10. 刘伟吉,阳飞龙,祝效华,罗云旭,何灵. 异形PDC齿切削破岩提速机理研究. 中国机械工程. 2022(17): 2133-2141 . 百度学术
11. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
12. 徐卫强,史怀忠,曹权,史杏杏,胡锡辉,熊超,陈晗. 锥形PDC齿破碎砾岩特性试验研究. 石油机械. 2021(09): 9-16 . 百度学术
13. 麻地辉,薛娟,李毅锐. 水力结构增强型PDC钻头应用分析. 西部探矿工程. 2019(12): 64-65+74 . 百度学术
14. 汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验. 石油钻探技术. 2018(02): 58-62 . 本站查看
15. 杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 . 百度学术
16. 孙源秀,邹德永,郭玉龙,陈修平,易杨. 切削-犁削混合钻头设计及现场应用. 石油钻采工艺. 2016(01): 53-56 . 百度学术
17. 孙源秀,邹德永,徐城凯,郭玉龙. 锥形聚晶金刚石复合片钻头(PDC)齿与常规PDC齿破岩效果对比试验. 科学技术与工程. 2015(36): 159-162 . 百度学术
其他类型引用(15)