The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield
-
摘要: 针对塔里木油田复杂地质条件下的井漏问题,结合地层特征分析了该油田的井漏类型,总结了该油田防漏堵漏技术发展历程及取得的技术成果。分析可知,塔里木油田漏失类型包括孔隙性漏失、裂缝性漏失和溶洞型漏失,但以裂缝性和缝洞型漏失为主。该油田的防漏堵漏技术发展经历了基础体系建立阶段和特色技术发展完善阶段,形成了油基钻井液防漏堵漏、高强度承压堵漏、高压盐水层防漏堵漏和缝洞型漏失堵漏等技术。通过分析梳理,明确了塔里木油田防漏堵漏技术现状和依然存在的漏失难题,确定了攻关方向,提出了加强地层预测、研发或引进新型堵漏技术、丰富工程技术手段和开发大数据堵漏软件等技术发展建议。Abstract: With the goal of solving the problem of circulation lost under complicated geological conditions of the Tarim Oilfield, this paper analyzed the types of circulation lost in this oilfield combining its formation characteristics, and summarized the development history and achievements of leakage prevention and plugging technologies in this field. It shows that leakages induced by porosity, fracture and caverns are all encountered in Tarim Oilfield, but mainly caused by fractures and cavity. The development of leakage prevention and plugging technologies in this oilfield has undergone two stages: the establishment of basic system and the development and perfection of characteristic technology. A series of techniques have been formed such as oil-based drilling fluid leakage prevention and plugging, high-strength pressure-bearing plugging, high-pressure brine layer leakage prevention and plugging, and fracture-cavity leakage plugging. From the analysis and sorting, we have clarified the current status of leakage prevention and plugging techniques in Tarim Oilfield and the remaining challenges in leakage control, and determined the trend of research. We proposed suggestions for further development of those technologies, such as strengthening formation prediction, developing or introducing new plugging technologies, enriching engineering techniques, and developing big data plugging software.
-
随着油气田开发不断深入,开发环境愈加恶劣,对压裂液的性能提出了更高的要求[1]。压裂液种类繁多,按其物化性质通常可划分为油基压裂液、水基压裂液和泡沫压裂液等[2]。油基压裂液具有成本低、可回收和对地层伤害较小的优点,但存在安全性较差、携砂性能不好、施工难度大和技术水平不高等缺点,导致其仅用于水敏性储层压裂[3]。泡沫压裂液是将二氧化碳(氮气)注入清水或聚合物水溶液中并加入稳定剂和表活剂形成的气液两相体系,现场施工难度大、控制精度不足是限制其发展的主要因素[4]。水基压裂液中的天然植物胶压裂液常采用有机硼交联剂,优点是稳定性强、携砂性能好、施工工艺简单,但抗温性差、破胶液残渣多、摩阻大等缺点使其逐渐丧失优势[5]。聚合物压裂液目前得到快速发展,其加入有机锆、有机钛、有机硼等交联剂形成的冻胶具有摩阻低、携砂性能好、无残渣、对地层伤害小等优点,但其稳定性、抗温性、抗盐性等与聚合物种类息息相关[6-9]。聚合物压裂液通常以阴离子型聚丙烯酰胺为稠化剂,阴离子型聚丙烯酰胺具有一定的增黏作用,但耐盐性能较差。阳离子型聚丙烯酰胺虽然大幅度提升了聚丙烯酰胺的耐盐性能,但依然存在水溶性和黏度低等问题;而两性聚丙烯酰胺同时具有较好的耐温耐盐性能和水溶性[10]。Dai Caili等人[11]采用溶液共聚法,以苯乙烯磺酸钠(SSS)、丙烯酰胺(AM)和丙烯酰氧乙基三甲基氯化铵(DAC)为单体,制备了新型耐温两性聚丙烯酰胺(PASD);Quan Hongping等人[12]通过自由基聚合在水溶液中合成了羧基甜菜碱两性疏水缔合聚丙烯酰胺,表现出良好的耐温性和抗剪切性。目前所合成的两性聚丙烯酰胺在高温下具有优异的增稠能力,但大多耐盐性能较差。为此,笔者在丙烯酰胺(AM)链上引入阴离子单体2-丙烯酰胺-2-甲基丙磺酸(AMPS)和阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC),合成了一种两性聚丙烯酰胺AMPAM。评价结果表明,两性聚丙烯酰胺AMPAM具有良好的增黏、溶解、耐盐性能和热稳定性,以两性聚丙烯酰胺AMPAM为稠化剂配制的盐水聚合物压裂液具有很好的耐温、耐剪切和破胶性能。
1. 合成与评价方法
1.1 试剂与仪器
丙烯酰胺(AM,分析纯)、尿素(分析纯)、无水亚硫酸钠、过硫酸铵(含量≥98.0%,分析纯)和氢氧化钠(含量≥98.0%,分析纯)、 2-丙烯酰胺-2-甲基丙磺酸(AMPS,含量≥98.0%)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)和2,2’-偶氮二异丁基脒二盐酸盐(V-50,分析纯)。
ESJ120-4B型电子天平、GKC数显智能型恒温水浴锅、101-AO型电热恒温鼓风干燥箱、Quanta450型环境扫描电子显微镜、W-1型固体样品粉碎机、乌氏黏度计、WQF-600N傅里叶红外光谱仪、ZNN-D6型六速旋转黏度计和HAAKE MARS Ⅲ型高温高压旋转流变仪。
1.2 AMPAM的合成
采用水溶液聚合法,将一定量AM、AMPS和DMC溶于蒸馏水中,滴加NaOH溶液,将其pH值调整为6.0,再加入一定量的尿素,充分混合,然后转移到带有搅拌器的四颈烧瓶中,放置于水浴锅中,通入氮气20 min后加入过硫酸铵、亚硫酸氢钠及V-50,搅拌10 min后停止通入氮气,将水浴锅温度调为20 ℃,待溶液完全反应形成胶状物,将胶状物剪成颗粒状放入80 ℃的烘箱中烘8 h,粉碎制得AMPAM。
1.3 评价方法
1.3.1 AMPAM特性黏度及黏均相对分子质量的测定
准确称取0.05 g AMPAM放入100 mL容量瓶,加入50 mL蒸馏水,待充分溶解后加入浓度2 mol/L的NaC1溶液50 mL,把容量瓶放于30 ℃水浴锅中搅拌均匀至恒温,用玻璃漏斗过滤。将乌氏黏度计放置于30 ℃恒温水浴中,取15 mLAMPAM溶液转入到乌氏黏度计中,测定其特性黏度[η]。两性聚丙烯酰胺黏均相对分子质量M可利用Mark Houwink方程计算。
[η]=KMα (1) 式中:
[η] 为特性黏度;K为比例常数;α为和分子形状有关的经验常数。K和α与体系的性质有关,在一定相对分子质量范围内与相对分子质量无关。此处K取0.128,α取0.586。
1.3.2 热稳定性的测定
热重分析被用来测试待测样品随着温度升高,质量是否发生变化,据此判断待测样品在一定温度下是否稳定。测定AMPAM热稳定性时的保护气和吹扫气均采用纯度为99.999%的N2,其流量均为50 mL/min。测定时温度由25 ℃升至600 ℃,升温速率控制在10 ℃/min。
2. 合成条件的确定
2.1 单体总质量分数对AMPAM性能的影响
设定AM、AMPS和DMC的质量比为65∶25∶10,引发剂加量为单体总质量的0.2%,反应温度控制在20 ℃,pH值调整为6.0,按单体总质量分数15%,20%,25%,30%和35%合成AMPAM,然后测定其黏均相对分子质量和其质量分数0.5%溶液的表观黏度,结果如图1所示。
由图1可知:随单体总质量分数增加,所合成AMPAM的黏均相对分子质量及其溶液的表观黏度先升高后降低;单体总质量分数为25%时,所合成AMPAM的黏均相对分子质量及其溶液的表观黏度达到最高。这是因为随着单体总质量分数增大,链增长速率增大,所合成AMPAM的分子链更长,其黏均相对分子质量和其溶液的表观黏度升高[13],但是单体总质量分数超过一定范围后,反应会快速终止,所合成AMPAM的分子链缩短,因此其黏均相对分子质量和其溶液的表观黏度均降低。
2.2 单体质量占比对AMPAM性能的影响
设定阳离子单体DMC的质量占单体总质量的10%保持不变,单体AM和AMPS的质量之和占单体总质量的90%,改变单体AMPS质量占总单体总质量的占比合成AMPAM,测试合成AMPAM的黏均相对分子质量及其质量分数0.5%溶液的表观黏度,结果如图2所示。
由图2可知,随着单体AMPS质量占比增大,所合成AMPAM的黏均相对分子质量及其溶液的表观黏度均先升高后降低。这是因为随着AMPS质量占比增大,AMPAM中的负电荷增多,不同链之间的阴阳离子相互吸引形成较弱的物理交联,AMPAM中的阳离子基团会和带负电荷的磺酸基作用,使分子链卷曲,流体力学半径较小,使其溶液的表观黏度降低。但是当AMPS质量占比过大时,聚合反应更剧烈,容易因放热形成局部高温产生大量自由基,使分子链终止速度加快,从而易形成黏均相对分子质量较低的寡聚体[14],使其溶液黏度降低。因此,确定单体AMPS的质量占单体总质量的25%。
2.3 引发剂加量对AMPAM性能的影响
设定AM、AMPS和DMC的质量比为65∶25∶10,加入不同量的引发剂,在温度20 ℃、pH值为6.0的条件下合成AMPAM,测试所合成AMPAM的黏均相对分子质量及其质量分数0.5%溶液的表观黏度,结果如图3所示。
从图3可以看出,随着引发剂加量增大,AMPAM的黏均相对分子质量及其溶液的表观黏度均先升高后降低。引发剂加量较小时,活性自由基数量较少,无法在短时间内反应生成高相对分子质量的AMPAM[15],然而当引发剂加量继续增大,反应活性过高,容易形成寡聚体,导致AMPAM的相对分子质量降低[16]。因此,引发剂加量选择0.2%。
2.4 pH值对AMPAM性能的影响
合成AMPAM采用的引发体系是由亚硫酸氢钠和V-50组成的复合引发体系,而亚硫酸氢钠对pH值的依赖性强[17]。因此,需要优选合适的pH值。固定引发温度、引发剂加量、单体质量比、单体总质量分数等,改变pH值合成AMPAM,测试AMPAM的黏均相对分子质量及其质量分数0.5%溶液的表观黏度,结果如图4所示。
从图4可以看出,随着pH值增大,AMPAM的黏均相对分子质量及其溶液表观黏度均先升高后降低。这是由于酸度较高时,溶液中的H+会促进氧化还原反应的发生,使反应中心数目增多,聚合程度降低,导致产物的相对分子质量降低[18]。pH值过高时,反应体系中产生氮氚丙酰胺(NTP)链转移剂,使产物的相对分子质量降低,导致溶液的黏度降低。根据试验结果,确定反应体系的pH值为6.0。
3. AMPAM的结构表征
采用KBr压片法,利用红外光谱仪测试AMPAM的红外光谱,结果如图5所示。
由图5可知:3 645~3 125 cm−1的宽峰源于不同基团的相互作用,该区间内包含—NH2基和—OH基的吸收峰;1 660 cm−1处的吸收峰为伯酰胺—C=O的伸缩振动峰;2 922和1 400 cm−1处的吸收峰为—CH2—和—CH3的振动吸收峰;1 052 cm−1处的吸收峰是DMC所含—C—O—C—基的伸缩振动峰。此外,1 188.1和1 041.6 cm−1处的吸收峰为—SO3—基团的特征吸收峰。可以看出,AM、AMPS和DMC的特征峰都已出现在图中。
4. AMPAM的性能评价
4.1 增黏性能
配制质量分数0.2%~0.7%的AMPAM溶液,在常温下使用六速旋转黏度计以170 s−1的剪切速率测试其表观黏度,结果如图6所示。
由图6可知,随AMPAM加量增大,其溶液的表观黏度升高。这是因为AMPAM上的正电荷和负电荷表现出静电吸引作用,通过静电作用形成了许多链节,并且随着其加量增大,相互吸引的正负电荷增多,网状结构变得更强(见图7);且AMPAM溶解过程中也会产生氢键,在氢键作用下会形成许多分子间链节,进一步催生了网状结构。两性聚丙烯酰胺与单一性质的聚丙烯酰胺增黏的不同之处是单一性质的聚丙烯酰胺主要是通过增大其流体力学体积来增黏,而两性聚丙烯酰胺增黏主要依靠阴阳离子电荷之间的相互作用力形成网状结构来增黏。
4.2 溶解性能
取一定量的蒸馏水,加入不同量的AMPAM,在温度30 ℃下以400 r/min的转速搅拌,每搅拌10 min测试1次表观黏度,结果如图8所示。
由图8可知,AMPAM加量小于0.6%时,20 min内能够完全溶解;随着AMPAM加量增大,AMPAM的溶解速率逐渐变慢;当其加量大于0.6%时,无法在40 min内完全溶解。
4.3 耐盐性能
配制矿化度为0~20 g/L的氯化钠溶液和矿化度为0~10 g/L的氯化钙溶液,在不同矿化度的氯化钠溶液和氯化钙溶液中分别加入0.5%的AMPAM、常用阳离子和阴离子聚丙烯酰胺,搅拌均匀,然后在温度30 ℃下用六速旋转黏度计测试其表观黏度,结果如图9和图10所示。
从图9和图10可以看出,用矿化度为20 g/L的氯化钠溶液和矿化度为10 g/L的氯化钙溶液配制质量分数0.5%AMPAM的溶液,其黏度依然在20 mPa·s,表明AMPAM有非常好的耐盐性能,耐盐性能优于常用的阳离子和阴离子聚丙烯酰胺。
4.4 热稳定性
通过测定一定质量AMPAM加热到不同温度下的质量,考察AMPAM的热稳定性。温度从25 ℃升至600 ℃,升温速率为10 ℃/min,测试结果如图11所示。
图11中AMPAM的热重曲线可分为3个阶段:第1阶段是25~235 ℃,在100 ℃以下损失的质量是AMPAM中的水分,这是由于AMPAM分子中的磺酸基和酰胺基有良好的吸水性和强亲水性[19],在100~235 ℃损失的质量是未反应的单体和残留的溶剂;第2阶段是235~327 ℃,该阶段AMPAM开始分解,分子链中的酰胺基和磺酸基发生消除反应;第3阶段是327~425 ℃,该阶段AMPAM的主链和支链开始发生断裂和分解。因此,AMPAM具有较好的热稳定性。
5. AMPAM压裂液性能评价
5.1 耐温耐剪切性能
耐温耐剪切性能是压裂液最重要的性能指标,直接影响压裂液施工造缝和携砂的能力[20-21]。在矿化度为30 g/L的氯化钠溶液中加入0.5%的AMPAM,待其完全溶解后再加入0.5%的交联剂XCS-1,待其交联形成冻胶后,利用HAAKE MARS Ⅲ型高温高压旋转流变仪,在温度145 ℃下以170 s−1的剪切速率测试其表观黏度随剪切时间的变化,结果如图12所示。
由图12可知,以矿化度30 g/L氯化钠溶液配制的AMPAM压裂液在温度145 ℃下以170 s−1的剪切速率剪切1 h后,表观黏度仍能达到140 mPa·s,远高于行业标准《压裂液通用技术条件》(SY/T 6376—2008)的最低要求(大于40 mPa·s),表明AMPAM压裂液有良好的耐温耐剪切性能。
5.2 携砂性能
在矿化度为30 g/L的氯化钠溶液中加入0.5%AMPAM配制的AMPAM压裂液基液,分别加入10%,20%和30%的陶粒,再加入0.5%的交联剂XCS-1,观察其携砂性能,发现4 h内陶粒几乎没有沉降,表明AMPAM压裂液具有良好的携砂性能。
5.3 破胶性能
破胶剂过硫酸铵加量固定为0.1%,考察不同温度下AMPAM压裂液的破胶情况,结果见表1。
表 1 AMPAM压裂液的破胶性能Table 1. Gel breaking property of AMPAM fracturing fluid温度/℃ 破胶时间/h 破胶黏度/(mPa·s) 残渣含量/(mg·L−1) 60 8.0 3.17 177.3 90 4.0 2.39 109.1 120 2.5 2.16 92.3 150 1.0 2.23 80.9 从表1可以看出:在温度60 ℃下,AMPAM压裂液可以在8 h内破胶;在温度90 ℃以上,AMPAM压裂液可以在4 h内破胶;AMPAM压裂液破胶液的黏度低于4 mPa·s、残渣含量均低于180 mg/L,其破胶性能满足行业标准《压裂液通用技术条件》(SY/T 6376—2008)的要求[22]。总体而言,AMPAM压裂液在不同温度下的破胶效果较好,能满足一定条件下的压裂施工要求。
6. 结 论
1)以丙烯酰胺(AM)、 2-丙烯酰胺-2-甲基丙磺酸(AMPS)和丙烯酰氧乙基三甲基氯化铵(DAC)为单体,合成了一种两性聚丙烯酰胺AMPAM。最佳合成条件:单体AM、AMPS和DMC的质量比为65∶25∶10;3种单体的总质量分数为25%;复合引发剂2,2’-偶氮二异丁基脒二盐酸盐加量为单体总质量的0.2%;合成体系pH值为6.0,合成温度20 ℃。
2)两性聚丙烯酰胺AMPAM同时具有很好的溶解性和耐盐性能,其加量小于0.6%时,20 min内能够完全溶解;以矿化度为20 g/L的氯化钠溶液和10 g/L的氯化钙溶液配制的0.5%AMPAM溶液的黏度为20 mPa·s。
3)以矿化度为30 g/L的氯化钠溶液配制AMPAM压裂液的耐温耐剪切性能、携砂性能和破胶性能均能满足行业标准《压裂液通用技术条件》(SY/T 6376—2008)的要求,这表明两性聚丙烯酰胺AMPAM具有很好的耐盐性能,适合作为盐水聚合物压裂液的稠化剂。
-
表 1 精细控压钻井技术在塔中I号气田的应用情况
Table 1 Application of precise pressure management drilling technology in the Tazhong I Gas Field
井号 井型 控压钻进井段/m 钻井液
漏失量/m3中古105H 水平井 6 285.00~6 829.00 0 TZ26-H7 水平井 4 223.00~5 699.00 0 TZ26-H9 水平井 4 343.00~4 637.00 0 TZ26-H10 水平井 4 547.00~5 643.00 0 TZ26-H11 水平井 4 588.00~5 175.00 0 TZ721-8H 水平井 5 033.00~6 705.00 0 TZ5-H2 水平井 6 296.00~7 810.00 0 表 2 缝洞型漏失封堵技术应用效果
Table 2 Application effect of plugging technology for fracture-cavity leakage
井号 漏失量/
m3投球 施工效果 数量/个 直径/mm ZG-a 885.7 4 000 19 堵漏成功 ZG-b 3 728.0 10 000 10 堵漏成功,地层承压能力提高了7.5 MPa ZG-c 2 284.0 5 000 19 堵漏成功 ZG-d 3 078.0 10 000 19 堵漏成功 30 000 19 堵漏球无法架桥,效果不明显 ZG-e 1 263.9 30 000 19 施工效果不明显 ZG-f 2 732.6 30 000 19 堵漏后,油气活跃程度明显降低,不再出现液面上升或套压升高现象 ZG-g 3 989.6 30 000 19 堵漏后,采用1.08 kg/L钻井液钻进21 m,未漏 10 000 19 施工效果不明显 ZG-h 1 924.6 45 000 19 堵漏后恢复钻进,堵漏成功 -
[1] 邓昌松,张宗谭,冯少波,等. 高含硫、大漏、超深水平井钻完井技术:以塔里木油田中古10HC井为例[J]. 石油钻采工艺,2018,40(1):27–32. DENG Changsong, ZHANG Zongtan, FENG Shaobo, et al. Drilling and completion technologies suitable for ultradeep horizontal wells of high sulfur content and serious circulation loss: a case study on Well 10HC of Middle Paleozoic in Tarim Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(1): 27–32.
[2] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
[3] 黄智斌, 吴绍祖, 赵治信,等. 塔里木盆地及周边综合地层区划[J]. 新疆石油地质,2002,23(1):13–17. HUANG Zhibin,WU Shaozu, ZHAO Zhixin,et al. The composite regional stratigraphic classification in Tarim Basin and its circumferences[J]. Xinjiang Petroleum Geology, 2002, 23(1): 13–17.
[4] 李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术,2017,45(2):10–14. LI Ning,ZHOU Xiaojun,ZHOU Bo,et al. Technologies for fast drilling ultra-deep wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.
[5] 李兵,邓尚,李王鹏,等. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义[J]. 特种油气藏,2019,26(4):45–51. LI Bing, DENG Shang, LI Wangpeng, et al. Strike-slip fault system activity and hydrocarbon geology understanding in Tahe of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 45–51.
[6] 王新新,朱永峰,杨鹏飞,等. 塔里木盆地哈拉哈塘油田A-B区块二叠系火成岩漏失原因与应对措施[J]. 地质科技情报,2019,38(2):130–136. WANG Xinxin, ZHU Yongfeng, YANG Pengfei, et al. Lost circulation reason and solutions of Permian igneous rock in Halahatang Oilfield A-B Area, Tarim Basin[J]. Geological Science and Technology Information, 2019, 38(2): 130–136.
[7] 杨金龙,罗静兰,何发歧,等. 塔河地区二叠系火山岩储集层特征[J]. 石油勘探与开发,2004,31(4):44–47. doi: 10.3321/j.issn:1000-0747.2004.04.012 YANG Jinlong, LUO Jinglan, HE Faqi, et al. Permian volcanic reservoirs in the Tahe region[J]. Petroleum Exploration and Development, 2004, 31(4): 44–47. doi: 10.3321/j.issn:1000-0747.2004.04.012
[8] 陈柳,刘翔,洪英林,等. 塔中碳酸盐岩储层恶性井漏治理现状及对策浅析[J]. 西部探矿工程,2018,30(6):69–72. doi: 10.3969/j.issn.1004-5716.2018.06.026 CHEN Liu, LIU Xiang, HONG Yinglin, et al. Treatment of malignant well leakage in Tarim carbonate reservoir and countermeasures[J]. West-China Exploration Engineering, 2018, 30(6): 69–72. doi: 10.3969/j.issn.1004-5716.2018.06.026
[9] 王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33. WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33.
[10] 张路锋,周福建,张士诚,等. 塔里木克深致密砂岩气藏基质钻井液伤害评价[J]. 钻井液与完井液,2019,36(1):126–132. ZHANG Lufeng, ZHOU Fujian, ZHANG Shicheng,et al. Evaluation of drilling fluid damage to matrices of tight sandstone of Keshen gas reservoir in Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 126–132.
[11] 任保友,刘锋报,徐兴梁,等. 塔里木山前构造克深某区块盐膏层井漏技术处理[J]. 西部探矿工程,2018,30(2):75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027 REN Baoyou, LIU Fengbao, XU Xingliang, et al. Treatment of well leakage of salt-paste layer in a block of Keshen in Tarim Piedmont[J]. West-China Exploration Engineering, 2018, 30(2): 75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027
[12] 何选蓬,程天辉,周健,等. 秋里塔格构造带风险探井中秋1井安全钻井关键技术[J]. 石油钻采工艺,2019,41(1):1–7. HE Xuanpeng, CHENG Tianhui, ZHOU Jian, et al. Key technologies of safe drilling in Zhongqiu 1 Well, a risk exploration well in Qiulitag Tectonic Belt[J]. Oil Drilling & Production Technology, 2019, 41(1): 1–7.
-
期刊类型引用(9)
1. 邸士莹,赵云飞,马收,魏玉华,程时清,缪立南. 裂缝性致密油藏水平井缝间增产方法. 大庆石油地质与开发. 2025(01): 168-174 . 百度学术
2. 石登科,程时清,赵丹凤,汪洋,刘秀伟,徐泽轩. 基于PKN模型的致密油藏注水诱导裂缝数值模拟方法. 油气地质与采收率. 2025(01): 174-185 . 百度学术
3. 危常胜. 钻探企业绿色低碳发展思路及建议研究. 石油石化节能与计量. 2024(03): 75-78 . 百度学术
4. 宋君,李海燕,宋伟,刘亦菲,李金海,潘悦文,刘俊龙. 水驱油藏乳液中盐水对沥青质沉淀的影响. 特种油气藏. 2024(01): 123-130 . 百度学术
5. 刘成林,任杨,孙林,刘伟新,匡腊梅,张强,马喜超. 陆丰油田古近系低渗高温深层储层自源闭式强化注水技术研究与应用. 中国海上油气. 2024(02): 159-166 . 百度学术
6. 李忠诚,鲍志东,王洪学,张栋. 基于高压汞灯荧光显微观测的剩余油定量分析方法. 石油钻探技术. 2024(03): 112-117 . 本站查看
7. 周晋冲,曹仁义,蒲保彪,王继伟,吕柄辰,易琪. 致密油藏多轮次注水吞吐动态应力场及裂缝扩展规律研究. 岩石力学与工程学报. 2024(12): 3005-3017 . 百度学术
8. 康少飞,蒲春生,蒲景阳,王凯,黄飞飞,樊乔. 致密油藏暂堵强化注水吞吐及暂堵分流数学模型研究. 油气地质与采收率. 2023(04): 173-182 . 百度学术
9. 宋保建,李景全,孙宜丽,张薇,刘鹏. 致密油藏CO_2吞吐参数优化数值模拟研究. 特种油气藏. 2023(04): 113-121 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 872
- HTML全文浏览量: 294
- PDF下载量: 193
- 被引次数: 14