涪陵页岩气田加密井钻井关键技术

刘衍前

刘衍前. 涪陵页岩气田加密井钻井关键技术[J]. 石油钻探技术, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039
引用本文: 刘衍前. 涪陵页岩气田加密井钻井关键技术[J]. 石油钻探技术, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039
LIU Yanqian. Key Drilling Technologies of Infill Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039
Citation: LIU Yanqian. Key Drilling Technologies of Infill Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039

涪陵页岩气田加密井钻井关键技术

基金项目: 中国石化科技攻关项目“涪陵页岩气压裂区加密井安全钻井技术研究”(编号:JP17034)部分内容
详细信息
    作者简介:

    刘衍前(1976—),男,四川安岳人,2001年毕业于西南石油学院石油工程专业,高级工程师,主要从事页岩气钻井技术研究及管理工作。E-mail:liuyq@163.com

  • 中图分类号: TE242

Key Drilling Technologies of Infill Wells in the Fuling Shale Gas Field

  • 摘要: 涪陵页岩气田加密井多处于页岩气压裂区且井网部署密集,导致钻井溢漏等井下故障多发、钻井液安全密度窗口确定难、压裂液侵入造成井壁坍塌及卡钻、防压裂干扰井眼轨道设计难度大等问题。针对上述钻井技术难点,从压裂区地层孔隙压力计算模型建立、合理钻井液密度窗口设计、防压裂干扰井眼轨道设计、加密井防漏堵漏和溢漏同存防控等方面进行了技术攻关,形成了适用于涪陵焦石坝主体区块的加密井钻井关键技术。该关键技术在涪陵页岩气田应用31口井,平均水平段长1 933.25 m,平均钻井周期52.38 d,平均机械钻速10.31 m/h,较前期加密评价井机械钻速提高了15.3%,钻井周期缩短了10.7%。涪陵页岩气田加密井钻井关键技术为涪陵页岩气田二期产能建设提供了技术支撑,也为其他页岩气田开发提供了技术参考和借鉴。
    Abstract: Infill wells in the Fuling Shale Gas Field are mostly located in the shale gas fracturing area with dense well pattern, resulting in many drilling technical problems, such as complex and frequent overflows and leakages, difficulty in determining reasonable drilling fluid density window, borehole collapse and sticking caused by fracturing fluid intrusion, and high difficulty in designing borehole trajectory to avoid fracturing interference, etc. To solve the above problems, technical research has been carried out from the perspectives of establishing a formation pore pressure calculation model for fracture zones, reasonable drilling fluid density window design, anti-fracturing interference borehole trajectory design, leakage prevention and plugging, and the prevention and control of simultaneous overflow and leakage in infill wells, etc., forming the key drilling technology suitable for infill wells in the Jiaoshiba main block of Fuling. The key technology has been applied in 31 wells in the Fuling Shale Gas Field, with an average horizontal interval of 1 933.25 m, an average drilling cycle of 52.38 days, and an average ROP of 10.31 m/h. Compared with previous infill evaluation wells, the ROP was increased by 15.3%, and the drilling cycle was shortened by 10.7%. The key drilling technology for infill wells in the Fuling Shale Gas Field provided technical support for the phase II productivity construction of the Fuling Shale Gas Field, and also provided technical references for the development of other shale gas fields.
  • 图  1   涪陵页岩气田压裂区钻井液漏失拟合曲线

    Figure  1.   Drilling fluid leakage fitting curve of fracturing zones in the Fuling Shale Gas Field

    表  1   JY22-3HF井不同井深漏失特征统计

    Table  1   Statistics on leakage characteristics of well JY22-3HF at different depths

    漏失井深/m垂深/m漏失层位漏失量/m3漏失速度/(m3·h–1漏失钻井液密度/(kg·L–1井筒压力/MPa孔隙压力/MPa漏失压差/MPa
    2 954.672 612.96龙马溪组163.151.4940.7337.363.37
    3 717.242 676.34198.301.5042.0538.273.78
    下载: 导出CSV

    表  2   压裂区加密井钻井液密度设计方法应用情况

    Table  2   Application of drilling fluid density design method for infill wells in fracturing zones

    井号垂深/m孔隙压力系数安全压差/MPa设计钻井液密度窗口/(kg·L–1实钻钻井液密度/(kg·L–1实钻情况
    JY21-S22 340.00~2 440.001.352.341.35~1.451.43~1.45无溢漏
    JY5-S12 480.001.402.341.40~1.491.42~1.48无溢漏
    下载: 导出CSV

    表  3   绕障轨道对工程参数的影响

    Table  3   Influence of obstacle-bypassing track on engineering pa-rameters

    轨道类型摩阻/
    kN
    井深/
    m
    扭方位角/
    (°)
    预测滑动
    井段/m
    预测钻井
    周期/d
    原始设计1405 832.00 50233.0014.4
    绕障轨道1906 034.00120352.0017.5
    下载: 导出CSV

    表  4   靶点调整对工程参数的影响

    Table  4   Influence of target point adjustment on engineering parameters

    靶点位移/m井深/m稳斜角/(°)扭方位角/(°)摩阻/kN
    基准4 295.0027.00 122
    平移 50.004 296.0027.4 6.1128
    100.004 300.0027.812.1143
    150.004 306.0028.417.9157
    轴移 50.004 319.3030.80 131
    100.004 346.1034.10 142
    150.004 375.3037.10 154
    下载: 导出CSV

    表  5   页岩气水平井JYX6-5井的井身结构

    Table  5   Casing program of shale gas horizontal well JYX6-5

    开次井眼直径/mm钻深/m套管直径/mm套管下深/m
    导眼609.6 54.00473.1 53.50
    一开406.4 517.00339.7 516.50
    二开311.12 348.00244.52 348.42
    三开215.95 305.00139.75 297.35
    下载: 导出CSV
  • [1] 牛新明. 涪陵页岩气田钻井技术难点及对策[J]. 石油钻探技术, 2014, 42(4): 1–6.

    NIU Xinming. Drilling technology challenges and resolutions in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(4): 1–6.

    [2] 陈庭根, 管志川.钻井工程理论与技术[M].东营: 中国石油大学出版社, 2005.

    CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2005.

    [3] 艾军,张金成,臧艳彬,等. 涪陵页岩气田钻井关键技术[J]. 石油钻探技术, 2014, 42(5): 9–15.

    AI Jun, ZHANG Jincheng, ZANG Yanbin, et al. The key drilling technologies in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(5): 9–15.

    [4] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118

    LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118

    [5] 郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52–59.

    GUO Yintong, YANG Chunhe, JIA Changgui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.

    [6] 刘铁成,唐海,刘鹏超,等. 裂缝性封闭页岩气藏物质平衡方程及储量计算方法[J]. 天然气勘探与开发, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008

    LIU Tiecheng, TANG Hai, LIU Pengchao, et al. Material balance equation and reserve calculation method of fractured and closed shale-gas reservoir[J]. Natural Gas Exploration and Development, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008

    [7] 侯绪田,赵向阳,孟英峰,等. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30–36.

    HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, et al. Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30–36.

    [8] 舒刚,孟英峰,李皋,等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002

    SHU Gang, MENG Yingfeng, LI Gao, et al. Mechanism of mud loss and well kick due to gravity displacement[J]. Petroleum Drilling Techniques, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002

    [9] 王金刚,张杰,段小康,等. 漏失压力研究现状[J]. 中国西部科技, 2012, 11(10): 29–30,22.

    WANG Jingang, ZHANG Jie, DUAN Xiaokang, et al. Present study situation of pressure leakage[J]. Science and Technology of West China, 2012, 11(10): 29–30,22.

    [10] 李亚南,于占淼. 涪陵页岩气田二期水平井钻井防碰绕障技术[J]. 石油钻采工艺, 2017, 39(3): 303–306.

    LI Yanan, YU Zhanmiao. Collision avoidance and obstacle bypass technology for horizontal wells in the second phase of Fuling Shale Gas Field[J]. Oil Drilling & Production Technology, 2017, 39(3): 303–306.

    [11] 刘匡晓,王庆军,兰凯,等. 页岩气田三维水平井大井眼导向钻井技术[J]. 石油钻探技术, 2016, 44(5): 16–21.

    LIU Kuangxiao, WANG Qingjun, LAN Kai, et al. Large diameter hole steering drilling technology for three-dimensional horizontal well in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(5): 16–21.

    [12] 赵少伟,徐东升,王菲菲,等. 渤海油田丛式井网整体加密钻井防碰技术[J]. 石油钻采工艺, 2018, 40(supplement 1): 112–114.

    ZHAO Shaowei, XU Dongsheng, WANG Feifei, et al. Integral infilling and drilling anti-collision technology of cluster well pattern in Bohai Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(supplement 1): 112–114.

    [13] 李伟,刘文臣,周贤海,等. 涪陵页岩气田三维水平井轨道优化设计方法探讨[J]. 石油钻探技术, 2018, 46(2): 17–23.

    LI Wei, LIU Wenchen, ZHOU Xianhai, et al. 3D horizontal wellbore trajectory optimization design method in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(2): 17–23.

    [14] 杨鹏. 井工厂化作业钻井液关键技术[J]. 特种油气藏, 2019, 26(2): 10–15. doi: 10.3969/j.issn.1006-6535.2019.02.002

    YANG Peng. Key technology of drilling fluid for well factory-like operation[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 10–15. doi: 10.3969/j.issn.1006-6535.2019.02.002

    [15] 朱宝忠. 国内页岩气长水平井JY2-5HF井钻井液技术[J]. 钻井液与完井液, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011

    ZHU Baozhong. Drilling fluid technology for long horizontal shale gas Well JY2-5HF in China[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011

    [16] 梁文利. 深层页岩气油基钻井液承压堵漏技术[J]. 钻井液与完井液, 2018, 35(3): 37–41. doi: 10.3969/j.issn.1001-5620.2018.03.006

    LIANG Wenli. Enhancing pressure bearing capacity of formation to control mud losses in deep shale gas drilling with oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 37–41. doi: 10.3969/j.issn.1001-5620.2018.03.006

    [17] 方俊伟,朱立鑫,罗发强,等. 钻井液对裂缝性地层气侵的影响模拟研究[J]. 钻井液与完井液, 2019, 36(3): 287–292.

    FANG Junwei, ZHU Lixin, LUO Faqiang, et al. Simulation study on the effects of drilling fluid on gas cut from fractured formations[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 287–292.

    [18] 孔祥伟,林元华,邱伊婕. 控压钻井重力置换与溢流气侵判断准则分析[J]. 应用力学学报, 2015, 32(2): 317–322. doi: 10.11776/cjam.32.02.A012

    KONG Xiangwei, LIN Yuanhua, QIU Yijie. Research of mechanism for the gas invasion and gravity replacement in drilling operations[J]. Chinese Journal of Applied Mechanics, 2015, 32(2): 317–322. doi: 10.11776/cjam.32.02.A012

    [19] 黄国平,何世明,汤明,等. 顺南区块裂缝性储层置换式气侵影响因素研究[J]. 石油钻探技术, 2018, 46(5): 21–25.

    HUANG Guoping, HE Shiming, TANG Ming, et al. A Study on the effect of displacement gas cut on fractured reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21–25.

  • 期刊类型引用(17)

    1. 王大勇,马红滨,李欣龙,熊超,史怀忠,黄中伟,赫文豪. 高压水射流辅助锥形PDC齿破碎花岗岩试验研究. 石油机械. 2024(07): 36-44 . 百度学术
    2. 王鸿远. 锥形与常规PDC齿混合布齿破岩机理研究及钻头研制. 石化技术. 2024(08): 389-391 . 百度学术
    3. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 . 百度学术
    4. 鲍伟伟,赵国辉,徐杨. 大港页岩油水平井优快钻井技术. 中国石油和化工标准与质量. 2023(12): 159-161 . 百度学术
    5. 傅新康,黄中伟,史怀忠,吴洪志,何森林,熊超,赫文豪. 锥形齿与平面齿切削碳酸盐岩特征对比分析. 石油机械. 2023(07): 59-67 . 百度学术
    6. 熊超,黄中伟,王立超,史怀忠,赫文豪,陈振良,李根生. 锥形聚晶金刚石复合片齿破岩特征与机制研究. 岩土力学. 2023(08): 2432-2444 . 百度学术
    7. 徐建飞,陈晖,邹德永,黄勇. 高造斜率定向CDE钻头设计与应用. 机械设计与制造工程. 2023(09): 117-120 . 百度学术
    8. 李彦操. PDC钻头齿的破岩机理和性能测试方法研究现状. 金刚石与磨料磨具工程. 2023(05): 553-567 . 百度学术
    9. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看
    10. 刘伟吉,阳飞龙,祝效华,罗云旭,何灵. 异形PDC齿切削破岩提速机理研究. 中国机械工程. 2022(17): 2133-2141 . 百度学术
    11. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
    12. 徐卫强,史怀忠,曹权,史杏杏,胡锡辉,熊超,陈晗. 锥形PDC齿破碎砾岩特性试验研究. 石油机械. 2021(09): 9-16 . 百度学术
    13. 麻地辉,薛娟,李毅锐. 水力结构增强型PDC钻头应用分析. 西部探矿工程. 2019(12): 64-65+74 . 百度学术
    14. 汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验. 石油钻探技术. 2018(02): 58-62 . 本站查看
    15. 杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 . 百度学术
    16. 孙源秀,邹德永,郭玉龙,陈修平,易杨. 切削-犁削混合钻头设计及现场应用. 石油钻采工艺. 2016(01): 53-56 . 百度学术
    17. 孙源秀,邹德永,徐城凯,郭玉龙. 锥形聚晶金刚石复合片钻头(PDC)齿与常规PDC齿破岩效果对比试验. 科学技术与工程. 2015(36): 159-162 . 百度学术

    其他类型引用(15)

图(1)  /  表(5)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  267
  • PDF下载量:  153
  • 被引次数: 32
出版历程
  • 收稿日期:  2019-09-11
  • 修回日期:  2020-05-07
  • 网络出版日期:  2020-07-07
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回