形状记忆筛管膨胀性能测试

段友智, 刘欢乐, 艾爽, 秦星, 岳慧, 刘伯昂

段友智, 刘欢乐, 艾爽, 秦星, 岳慧, 刘伯昂. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038
引用本文: 段友智, 刘欢乐, 艾爽, 秦星, 岳慧, 刘伯昂. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038
DUAN Youzhi, LIU Huanle, AI Shuang, QIN Xing, YUE Hui, LIU Boang. Test of the Expansion Performance for Shape Memory Screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038
Citation: DUAN Youzhi, LIU Huanle, AI Shuang, QIN Xing, YUE Hui, LIU Boang. Test of the Expansion Performance for Shape Memory Screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038

形状记忆筛管膨胀性能测试

基金项目: 中国石化科技攻关项目“水平井环空自充填防砂完井技术研究”(编号:P16012)资助
详细信息
    作者简介:

    段友智(1976—),男,山东东营人,2000年毕业于青岛大学化学工程专业,2010年获中国石油大学(华东)油气田开发工程专业博士学位,高级工程师,主要从事完井工艺、油气井防砂及提高采收率方面的研究工作。E-mail:duanyz.sripe@sinopec.com

  • 中图分类号: TE925+.3

Test of the Expansion Performance for Shape Memory Screens

  • 摘要:

    为了解形状记忆筛管在井下环境的膨胀性能,根据该筛管在井下的膨胀原理,研发了能够模拟井下环境的形状记忆筛管膨胀性能测试系统,进行了形状记忆筛管样机膨胀性能测试,分析了循环流体排量和温度对响应温度、膨胀速度和膨胀力的影响。研究结果表明:随着循环流体排量增大,响应温度随之升高,膨胀速度降低;当循环流体温度不低于初始响应温度时,随着循环流体温度升高,膨胀速度增大;循环流体的排量和温度对最终膨胀力的影响较小。测试结果为形状记忆筛管的设计和应用提供了依据。

    Abstract:

    In order to understand the expansion performance of shape memory screens in the downhole environments, a system for testing screen expansion performance was developed by simulating downhole environments based on its expansion principle, by which the expansion performance of the shape memory screen prototype was tested and analyzed the influences of the circulating fluid flowrate and temperature on the response temperature, expansion rate and expansion force. The results showed that the response temperature increased and the expansion speed decreased with the increase of circulating fluid flowrate. When the circulating fluid temperature was not lower than the initial response temperature, the expansion rate increased as the circulating fluid temperature rose, which showed that the influences of circulating fluid flowrate and temperature on the final expansion force were relatively minor. The test results can provide a test basis for designing a shape memory screen and its application in well completion.

  • 我国页岩油资源丰富,储量超过700×108 t,准噶尔盆地、松辽盆地、渤海湾和鄂尔多斯盆地等多个区域均发现页岩油,部分地区初具开发规模[1-3]。松辽盆地北部大庆古龙页岩油为典型的陆相页岩油,主要目的层分布范围广、厚度大,岩性以层状页岩、纹层状页岩和泥岩为主。大庆油田已在古龙区块完成3口页岩油预探水平井,完钻井深2 135~4 230 m,水平段长1 630~2 220 m,钻井过程中存在井壁不稳定、井眼缩径、钻进摩阻大和定向困难等问题,导致钻井周期长、机械钻速低,全井平均机械钻速仅12.38 m/h[4-6]。国外采用LWD+螺杆定向、旋转导向、水力振荡器和高效PDC钻头等工具和采取优化钻井参数等措施,以提高页岩油钻井速度;国内川渝地区、渤海湾和新疆玛湖地区等页岩油气开发的重点区域,采用高造斜旋转导向系统、水力振荡器和高效PDC钻头等方法提高钻井速度[7-8]

    笔者根据现场实钻经验及现有技术水平,对井身结构、井眼轨道进行优化,以降低施工难度;针对二开直井段缩径、三开造斜段和水平段钻井周期长等问题,研究了井壁修整工具、旋冲螺杆钻井工具、清砂接头和水力振荡器等工具,并进行了钻井参数优化,形成了大庆页岩油水平井钻井提速技术,现场应用效果较好,为大庆油田采用水平井高效开发页岩油提供了技术支撑。

    大庆油田页岩油储层岩性以富含有机质的泥岩、页岩为主,黏土矿物含量高,且多孔多缝,呈纹层状结构,地层水敏性强,易发生层间散裂。目的层上部为泥岩、粉砂质泥岩互层,中下部为灰黑、灰绿、紫红色泥岩、粉砂质泥岩互层,存在长泥岩段,钻进时易出现缩径、泥包钻头和卡钻等复杂情况。泥岩遇水膨胀导致缩径,影响钻井时效,增大井下遇阻卡钻事故风险;造斜段采用三维井眼轨道,造斜率难保证,入靶精准度低,并且施工困难;水平井水平段长,岩屑易堆积形成岩屑床,导致钻进过程中摩阻扭矩大,最大摩阻超过343 kN,最大扭矩24.5 kN·m,严重影响了水平段钻井速度。分析认为,大庆页岩油地层钻井提速主要存在以下技术难点:

    1)大庆页岩油水平井上部地层存在流砂层和大段泥岩,特别是目的层上部地层水化膨胀,易引起井眼缩径,导致起下钻阻卡、测井和固井前需多次反复通井,影响钻井时效;页岩储层黏土矿物含量高,井壁易剥落形成岩屑床,导致卡钻、遇阻和憋泵故障频发,已施工的3口页岩油水平井均存在不同程度的井壁剥落或坍塌、频繁憋泵和卡钻等问题。

    2)大庆油田页岩油开发以丛式井为主,一般设计为大位移三维井眼轨道,在增斜的同时要扭方位,与常规二维井眼轨道相比,钻进摩阻增加40%以上;长水平段三维水平井因位垂比大、裸眼段长,消除偏移距后易形成井眼拐点,造成井眼轨迹控制难度大[9-13]。已钻井采用三维井眼轨道,造斜段钻进过程中滑动摩阻扭矩急剧增大,定向工具和钻头作用力方向易偏离设计轨道,工具面不稳,滑动钻进比例高,严重影响机械钻速。

    3)页岩油水平井水平段长,岩屑不易返出,在钻柱低边堆积形成岩屑床,钻进后期钻柱与井壁之间摩阻扭矩大,钻头难以有效传递钻压,钻具极易发生弯曲,导致钻具疲劳损坏;滑动钻进时托压严重,工具面失稳,机械钻速低。已施工3口水平井水平段的平均机械钻速为8.05 m/h,与全井平均机械钻速(12.38 m/h)相差较大。

    针对页岩油水平井钻井存在的井壁不稳定、井眼轨迹控制困难和钻进摩阻大等问题,提出了提高钻井速度、减少井下故障的技术思路,开展了井身结构、井眼轨道和钻井参数优化及钻井提速配套工具研究,形成了大庆油田页岩油水平井钻井提速技术,达到了提高单趟钻进尺、减少井下故障、提高机械钻速和提高“一趟钻”成功率的目的。

    原井身结构采用3层套管结构,二开钻至造斜点下技术套管,三开钻进造斜段和水平段,技术套管下深2 000 m左右,三开下部地层井壁失稳,影响了三开造斜段和水平段钻井安全和效率。根据大庆页岩油地质特性及后期压裂施工工艺,依据钻井安全、提高钻井效率的原则,对井身结构进行了优化:一开,采用ϕ444.5 mm钻头钻进,下入ϕ339.7 mm表层套管,水泥返至地面,封隔浅部水层;二开,采用ϕ311.1 mm钻头钻进,下入ϕ244.5 mm技术套管,水泥返至地面,封隔目的层以上大段易垮塌泥页岩层,为三开水平段钻进提供安全施工环境;三开,采用ϕ215.9 mm钻头钻进,下入ϕ139.7 mm油层套管,水泥返至地面,为后期压裂提供安全保障。

    在实现地质设计目的的前提下,充分考虑地质特征、井眼轨迹控制技术、钻进摩阻扭矩及钻井参数等因素,优化井眼轨道,以降低施工难度。已钻井采用三维井眼轨道,由于二开为直井段,三开造斜段需要同时进行增斜和扭方位,导致滑动钻进比例高、井眼轨道不平滑、钻进摩阻增大和机械钻速低。针对以上问题,优化井眼轨道,依据造斜率小于6.5°/30 m的原则,在实现地质目的的前提下,兼顾降低施工难度,合理上移造斜点,二开就进行造斜施工,以降低造斜率,提高井眼平滑度。在保证水平段长度的前提下,将三维井眼轨道优化为双二维井眼轨道,上部二维井段完成偏移距,下部井段按照常规二维水平井施工,实现三维变二维。采用双二维井眼轨道井眼轨迹更平滑,井眼曲率最高降低20%,复合钻比例提高25%,钻进摩阻、扭矩更小,造斜段和水平段机械钻速显著提高。

    页岩油水平井二开上部姚家组等地层易缩径,导致ϕ311.1 mm井眼起下钻阻卡,测井固井前需多次往复通井,严重影响钻井周期。为解决此问题,研制了随钻井壁修整工具(见图1)。该工具设计为四直棱结构,直棱侧面、上下斜面设计有切削齿。钻柱旋转过程中,切削齿进入缩径井段对其进行扩眼、修整,易缩径井段位置每隔200~300 m安放1只井壁修整工具,解决了泥岩段缩径需要多次通井的问题,可显著提高钻井时效。

    图  1  井壁修整工具的结构
    Figure  1.  Structure of the borehole wall dressing tool

    为提高页岩油二开造斜段造斜率和机械钻速,研制了旋冲螺杆钻井工具。该工具为螺杆钻具+冲击工具一体化设计(见图2),采用高输出扭矩的等壁厚高效螺杆,冲击部分能够将钻井液的压力能量转化为旋转破岩动力,输出高频冲击辅助钻头破岩,提高机械钻速。通过整体方案设计,旋冲螺杆工具弯点至连接钻头端面距离小于常规螺杆弯点至钻头端面距离,可提高造斜率。工具主要技术参数为:额定工作压耗≤8 MPa,输出扭矩8~18 kN·m,工作转速70~130 r/min,冲击频率10~40 Hz,工作温度0~120 ℃,使用寿命不小于180 h,弯点距离不大于2.00 m。旋冲螺杆钻井工具可以保护钻头,提高单只钻头的进尺和钻井速度,目前该工具已形成系列化产品及成熟的现场施工工艺。

    图  2  旋冲螺杆钻井工具的结构
    Figure  2.  Structure of the rotary screw

    页岩油水平井井壁易失稳,大斜度段、水平段易形成岩屑床,仅依靠水力参数优化和工艺改进不能完全解决井眼清洁的问题[14],为此,研制了清砂接头(见图3)。该接头设计有V形螺旋槽式流道和反向螺旋结构,采用漏斗式结构,流道入口尺寸大于出口尺寸,悬浮岩屑进入V形螺旋槽后流速急剧增大并改变方向,提高岩屑运移速度,上返钻井液流经V形螺旋槽后进入反向螺旋结构形成紊流,可将低边岩屑悬浮在井筒中。工具主要技术参数为:总长1 250 mm,上下接头外径为165 mm;V形螺旋槽长240~350 mm,最大外径165 mm。该工具可以破坏岩屑床,解决页岩油水平井塌块剥落造成的岩屑堆积问题,降低沉砂卡钻风险和水平段钻进摩阻,提高机械钻速。

    图  3  清砂接头的结构
    Figure  3.  Structure of the sand cleaning joint

    针对三开水平段滑动钻进时的托压问题,研制了水力振荡器。该工具主要由振动部分、动力部分和阀体总成组成(见图4),其原理是利用钻井液在流经阀体总成时,因过流面积发生周期性变化从而产生水力脉冲,将钻具与井壁之间的静摩擦力转变为动摩擦力,降低钻柱与井壁之间的摩阻,提高钻压传递效率[15-16]。应用水力振荡器能够给钻头施加真实的钻压,并保证工具面稳定,提高水平井钻井效率,降低发生井下故障的概率。水力振荡器主要工作技术参数为:排量32~36 L/s,压降3~4 MPa,频率16~17 Hz,振动幅度3~10 mm,振动冲击力37~43 kN。

    图  4  水力振荡器的结构
    Figure  4.  Structure of the hydraulic oscillator

    根据古龙页岩油地质特性,模拟计算了不同钻速、钻杆条件下返砂所需的最小排量及岩屑床高度。计算结果表明:采用ϕ127.0 mm钻杆,当机械钻速为15.0 m/h、转速为90 r/min、排量为33 L/s时,岩屑床高度为3.2 mm;排量为36 L/s时,岩屑床高度为2.1 mm,排量与岩屑床高度成反比关系;排量超过40 L/s时,对页岩井壁冲刷严重,井壁冲刷力增大25%,因此确定最优排量为33~40 L/s。数值模拟计算结果表明,当转速为90 r/min、钻压为98 kN时,涡动转速可达400 r/min以上,井壁受到瞬时侧向应力最高可达600 MPa。为了减少钻具涡动、钻井液冲刷对井壁稳定的影响,并保证最大限度地携岩,减小岩屑床高度,根据理论计算和现场实践,对钻井参数进行了优化,确定了最优的钻井参数:排量33~40 L/s,转速90~110 r/min,钻压58.8~98.0 kN。采用该钻井参数钻进可达到提速效果。

    大庆油田页岩油水平井钻井提速技术在古龙页岩油区块3口井进行现场试验,平均完钻井深4 691 m,平均机械钻速19.03 m/h,平均钻井周期35.23 d,与该区块之前施工的水平井相比,机械钻速提高53.7%(见表1)。下面以试验1井为例介绍现场试验情况。

    表  1  3口水平井现场试验数据
    Table  1.  Field test data from 3 horizontal wells
    井号井深/
    m
    水平段长/
    m
    机械钻速/
    (m·h–1
    钻井周期/
    d
    钻速提高
    效果,%
    试验1井4 7352 15019.3435.2556.22
    试验2井4 6231 82018.6534.2350.65
    试验3井4 7152 14019.1036.2154.28
    下载: 导出CSV 
    | 显示表格

    试验1井是位于古龙页岩油试验区块的一口开发井,设计井深4 735 m,设计水平段长2 020 m,采用三开井身结构。现场施工时,一开,采用ϕ444.5 mm钻头钻至井深265.00 m,ϕ339.7 mm表层套管下至井深264.48 m;二开,采用ϕ311.1 mm钻头钻至井深2 364.00 m,ϕ244.5 mm技术套管下至井深2 363.42 m;三开,采用ϕ215.9 mm钻头钻至井深4 735.00 m,ϕ139.7 mm生产套管下至井深4 730.58 m。

    二开从井深296.00 m开始进行造斜,第1趟钻采用1.25°旋冲螺杆钻具与ϕ311.1 mm PDC钻头配合的钻具组合,旋冲螺杆钻具增斜能力强,可合理确定滑动钻进和复合钻进比例,提高机械钻速;进尺1 320 m,机械钻速43.56 m/h。第2趟钻采用ϕ311.1 mm PDC钻头+1.25°常规螺杆的钻具组合,距钻头300 m的裸眼段每隔7柱钻杆使用1只井壁修整工具,共使用5只井壁修整工具,防止目的层上部地层缩径导致卡钻。1 700~1 856 m井段钻进过程中工具面不稳,定向托压严重,采用小钻压钻进,并采用大排量循环和井壁修整工具修整缩径井眼,钻进情况得到改善,第2趟钻进尺779 m,机械钻速14.78 m/h。

    三开ϕ215.9 mm井段进尺2 371 m,钻至井深4 735 m,3趟钻完成。第1趟钻采用PDC钻头+1.50°常规螺杆+LWD钻具组合,初期复合钻进正常,钻至井深2 492 m开始定向,定向过程中出现蹩跳钻现象,滑动钻进占比78.82%;钻至井深2 623 m,起钻更换钻头和螺杆;第1趟钻进尺259 m(2 364~2 623 m),机械钻速6.53 m/h。第2趟钻采用PDC钻头+1.50°常规螺杆+LWD+水力振荡器钻具组合,水力振荡器距钻头150 m,滑动钻进占比降至40.74%,机械钻速由6.53 m/h提至12.47 m/h;第2趟钻进尺256 m,进入A靶点后起钻,换旋转导向钻具组合。第3趟钻采用PDC钻头+旋转导向工具+清砂接头钻具组合,距钻头200 m处安放第1只清砂接头,然后每隔5柱钻杆安装1只清砂接头,清砂接头能在一定程度上减小岩屑床高度,降低卡钻风险;第3趟钻进尺1 856 m(2 879~4 735 m),机械钻速18.29 m/h。

    试验1井完钻井深4 735 m,水平段长2 150 m,钻井周期35.25 d,全井平均机械钻速19.03 m/h,其中二开机械钻速高达43.56 m/h,钻井提速效果较好。

    1)针对大庆油田古龙区块页岩油水平井的钻井技术难点,开展了井身结构、井眼轨道和钻井参数优化及钻井提速工具研究和等技术攻关,形成了大庆油田页岩油水平井钻井提速技术。

    2)大庆油田页岩油水平井钻井提速技术解决了地层稳定性差、井眼轨迹控制困难和水平段机械钻速低等技术难点,降低了井下钻井风险,大幅度了提高钻井速度,缩短了钻井周期,为加快大庆油田古龙区块页岩油勘探开发提供了技术支撑。

    3)为了进一步提高页岩油水平井机械钻速,建议加强钻井液井壁稳定井眼清洁技术、高性能旋转导向技术和高效减摩降阻技术等技术攻关,进一步完善页岩油水平井钻井提速技术,更好地满足大庆古龙区块页岩油高效勘探开发的需求。

  • 图  1   形状记忆筛管膨胀性能模拟测试系统

    Figure  1.   The simulation test system for expansion performance of shape memory screen

    图  2   不同温度下形状记忆筛管样机的外径

    Figure  2.   The outside diameter of shape memory screen at different temperatures

    图  3   不同排量下形状记忆筛管外径随温度的变化

    Figure  3.   Change of outside diameter of shape memory screen with temperature at different flowrates

    图  4   不同时间下形状记忆筛管样机的外径

    Figure  4.   Outside diameter of shape memory screen prototypeat different time

    图  5   不同温度下形状记忆筛管样机的外径

    Figure  5.   Outside diameter of shape memory screen prototypeat different temperature

    图  6   不同排量下形状记忆筛管样机的外径

    Figure  6.   Outside diameter of shape memory screen prototypeat different flowrates

    图  7   不同时间下形状记忆筛管样机的外径(循环流体排量0.6 L/min)

    Figure  7.   Outside diameter of shape memory screen prototype at different time (circulating fluid flowrate of 0.6 L/min)

    图  8   膨胀力随时间的变化

    Figure  8.   Change of expansion force with time

    图  9   不同温度下膨胀力随时间的变化

    Figure  9.   Change of expansion force with time at different temperatures

    图  10   不同排量下膨胀力随时间的变化

    Figure  10.   Change of expansion force with time at different flowrates

  • [1] 王敏生,光新军,孔令军. 形状记忆聚合物在石油工程中的应用前景[J]. 石油钻探技术, 2018, 46(5): 14–20.

    WANG Minsheng, GUANG Xinjun, KONG Lingjun. The prospects of applying shape memory polymer in petroleum engineering[J]. Petroleum Drilling Techniques, 2018, 46(5): 14–20.

    [2] 徐守余,王宁. 油层出砂机理研究综述[J]. 新疆地质, 2007, 25(3): 283–285. doi: 10.3969/j.issn.1000-8845.2007.03.011

    XU Shouyu, WANG Ning. Research on reservoir sand production mechanism[J]. Xinjiang Geology, 2007, 25(3): 283–285. doi: 10.3969/j.issn.1000-8845.2007.03.011

    [3] 王小鲁,杨万萍,严焕德,等. 疏松砂岩出砂机理与出砂临界压差计算方法[J]. 天然气工业, 2009, 29(7): 72–75. doi: 10.3787/j.issn.1000-0976.2009.07.022

    WANG Xiaolu, YANG Wanping, YAN Huande, et al. The sanding mechanism and sanding critical drawdown calculation in loose sandstone[J]. Natural Gas Industry, 2009, 29(7): 72–75. doi: 10.3787/j.issn.1000-0976.2009.07.022

    [4] 周林然,卢渊,伊向艺. 中国油井出砂预测技术现状[J]. 油气地质与采收率, 2006, 13(2): 100–102. doi: 10.3969/j.issn.1009-9603.2006.02.031

    ZHOU Linran, LU Yuan, YI Xiangyi. Present situation on sand prediction technology of oil well in China[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(2): 100–102. doi: 10.3969/j.issn.1009-9603.2006.02.031

    [5] 练章华,刘永刚,张元泽,等. 油气井出砂预测研究[J]. 钻采工艺, 2003, 26(5): 30–31. doi: 10.3969/j.issn.1006-768X.2003.05.011

    LIAN Zhanghua, LIU Yonggang, ZHANG Yuanze, et al. Application of plastic strain on sand production prediction in oil well[J]. Drilling & Production Technology, 2003, 26(5): 30–31. doi: 10.3969/j.issn.1006-768X.2003.05.011

    [6] 王勤田,赵彦超,杨晶,等. 油井出砂临界井底流压计算模型及应用[J]. 江汉石油学院学报, 2002, 24(2): 75–76.

    WANG Qintian, ZHAO Yanchao, YANG Jing, et al. Calculating model of critical bottomhole pressure of sand production and its application[J]. Journal of Jianghan Petroleum Institute, 2002, 24(2): 75–76.

    [7] 范兴沃,李相方,胡喜峰,等. 利用人工神经网络实现对油气井防砂方法优选[J]. 钻采工艺, 2003, 26(6): 53–54. doi: 10.3969/j.issn.1006-768X.2003.06.019

    FAN Xingwo, LI Xiangfang, HU Xifeng, et al. Optimum selection of sand control method in oil & gas well by using artificial neural network[J]. Drilling & Production Technology, 2003, 26(6): 53–54. doi: 10.3969/j.issn.1006-768X.2003.06.019

    [8] 刘大红,宋秀英,刘艳红,等. 割缝筛管防砂设计及应用[J]. 石油机械, 2004, 32(8): 13–16. doi: 10.3969/j.issn.1001-4578.2004.08.005

    LIU Dahong, SONG Xiuying, LIU Yanhong, et al. Slotted screen design and its application to oil/water wells in sand control[J]. China Petroleum Machinery, 2004, 32(8): 13–16. doi: 10.3969/j.issn.1001-4578.2004.08.005

    [9] 李天降,张建军. 激光割缝筛管–压裂砾石填充防砂工艺技术[J]. 海洋石油, 2004, 24(1): 51–53. doi: 10.3969/j.issn.1008-2336.2004.01.010

    LI Tianjiang, ZHANG Jianjun. The technology of laser slotted screen liner fracturing gravel packing sand contro[J]. Offshore Oil, 2004, 24(1): 51–53. doi: 10.3969/j.issn.1008-2336.2004.01.010

    [10] 高成元,张家营,徐强,等. 一次砾石充填防砂工具的研制[J]. 石油机械, 2003, 31(10): 37–38. doi: 10.3969/j.issn.1001-4578.2003.10.013

    GAO Chengyuan, ZHANG Jiaying, XU Qiang, et al. Development of primary sand control tool for gravel packing[J]. China Petroleum Machinery, 2003, 31(10): 37–38. doi: 10.3969/j.issn.1001-4578.2003.10.013

    [11] 董长银,张琪,李志芬,等. 筛管砾石充填井筒附近压降计算方法[J]. 西安石油学院学报(自然科学版), 2002, 17(2): 33–36.

    DONG Changyin, ZHANG Qi, LI Zhifen, et al. A new calculation method of the pressure drop around the wellbore of a gravel-packed perforated well[J]. Journal of Xi'an Petroleum Institute (Natural Science Edition), 2002, 17(2): 33–36.

    [12] 张福强. 形状记忆高分子材料[J]. 高分子通报, 1995, 16(1): 34–42.

    ZHANG Fuqiang. Shape memory polymers material[J]. Polymer Bulletin, 1995, 16(1): 34–42.

    [13] 喻春红,陈强,侯向辉,等. 化学交联型形状记忆聚氨酯材料研究[J]. 机械科学与技术, 2001, 20(1): 69–70. doi: 10.3321/j.issn:1003-8728.2001.01.030

    YU Chunhong, CHEN Qiang, HOU Xianghui, et al. Research on chemical cross-linking shape memory polyurethane material[J]. Mechanical Science and Technology, 2001, 20(1): 69–70. doi: 10.3321/j.issn:1003-8728.2001.01.030

    [14]

    METCALFE P. Expandable sand screen technology increases production[J]. World Oil, 2000, 221(2): 94–95.

    [15]

    MCMILLIN K. Using expandable sand screens in unconsolidated formations[J]. Offshore, 2000, 60(1): 52, 129.

    [16]

    OSUNJAYE G, ABDELFATTAH T. Open hole sand control optimization using shape memory polymer conformable screen with inflow control application[R]. SPE 183947, 2017.

    [17] 孙德旭,陈雪,梁伟,等. 聚氨酯类自膨胀防砂材料制备及性能评价[J]. 油田化学, 2016, 34(2): 217–221.

    SUN Dexu, CHEN Xue, LIANG Wei, et al. Preparation and performance evaluation of polyurethane-expandable material in sand control[J]. Oilfield Chemistry, 2016, 34(2): 217–221.

    [18] 童世虎,董雷,徐志洪. 形状记忆聚合物的力学性能研究[J]. 工程与试验, 2009, 49(3): 29–32. doi: 10.3969/j.issn.1674-3407.2009.03.008

    TONG Shihu, DONG Lei, XU Zhihong. The research on mechanical properties of shape memory polymer[J]. Engineering & Test, 2009, 49(3): 29–32. doi: 10.3969/j.issn.1674-3407.2009.03.008

    [19] 山口章三郎. 形态记忆[J]. 化学工业, 1983, 34(10): 57–60.

    YAMAGUCHI Saburo. Shape memory[J]. Chemistry Industry, 1983, 34(10): 57–60.

    [20]

    WANG Xiuli, OSUNJAYE G. Advancement in openhole sand control applications using shape memory polymer[R]. SPE 181361, 2016.

    [21]

    FURGIER J, VIGUERIE B, AUBRY E, et al. Stand alone screens: what key parameters are really important for a successful design[R]. SPE 165170, 2013.

    [22]

    YUAN Yusheng, GOODSON J E, JOHNSON M H, et al. In-situ mechanical and functional behavior characterization of shape memory polymer for sand control applications[R]. SPE 143204, 2012.

    [23]

    CARREJO N, HORNER, D N, JOHNSON M H. Shape memory polymer as a sand management alternative to gravel packing[R]. SPE 147101, 2011.

  • 期刊类型引用(12)

    1. 刘威. 长水平段水平井钻井技术难点及改进措施. 西部探矿工程. 2024(07): 74-77 . 百度学术
    2. 汪海阁,常龙,卓鲁斌,席传明,欧阳勇. 中国石油陆相页岩油钻井技术现状与发展建议. 新疆石油天然气. 2024(03): 1-14 . 百度学术
    3. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    4. 蔚远江,王红岩,刘德勋,赵群,李晓波,武瑾,夏遵义. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学. 2023(01): 191-205 . 百度学术
    5. 郭婷婷. 泥页岩易垮塌油藏钻井提速工艺技术研究. 西部探矿工程. 2023(10): 73-75+79 . 百度学术
    6. 张文平,许争鸣,吕泽昊,赵雯. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究. 石油钻探技术. 2023(05): 96-105 . 本站查看
    7. 李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 . 百度学术
    8. 田启忠,戴荣东,王继强,李成龙,黄豪彩. 胜利油田页岩油丛式井提速提效钻井技术. 石油钻采工艺. 2023(04): 404-409 . 百度学术
    9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 . 百度学术
    10. 倪维军,杨国昊,翟喜桐,马龙飞. 延安气田富县区域下古生界水平井优快钻井技术. 石油工业技术监督. 2023(12): 44-48 . 百度学术
    11. 姜文亚,于浩阳,陈长伟,宋舜尧,高莉津,王晓东,刘广华,冯建园. 陆相页岩油规模效益建产探索与实践. 现代工业经济和信息化. 2023(11): 249-252 . 百度学术
    12. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看

    其他类型引用(1)

图(10)
计量
  • 文章访问数:  1252
  • HTML全文浏览量:  663
  • PDF下载量:  82
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-09-14
  • 修回日期:  2020-04-24
  • 网络出版日期:  2020-05-07
  • 刊出日期:  2020-06-30

目录

/

返回文章
返回