Real Time Inversion and Field Test of LWD Azimuthal Electromagnetic Waves Based on Quasi-Newton Method
-
摘要:
为了利用随钻方位电磁波电阻率仪器的测量数据确定地层界面方位和距离,给地质导向提供决策依据,须采用准确可靠的反演方法。针对随钻方位电磁波电阻率仪器,建立了地质导向应用模型并模拟了其响应特征,研究了拟牛顿反演算法和流程,反演过程中只需要较小的计算量就可以得到Jacobian矩阵,大大提高了反演速度;并利用单界面和双界面地层的反演理论模型,验证了该算法的正确性和准确度。在胜利油田草XX井的现场试验结果表明,实时反演结果与方位电磁波电阻率成像显示及后期完井录井结果一致。该反演方法能满足利用方位电磁波电阻率进行地质导向的要求,为方位电磁波电阻率实时地质导向提供了一种高效、准确的计算方法。
Abstract:In order to determine the formation interface azimuth and distance by using the data measured by LWD azimuthal electromagnetic wave resistivity logging instrument using the quasi-Newton inversion algorithm. The objective was provide a decision-making basis for geosteering, an accurate and reliable inversion method must be used. For the LWD azimuthal electromagnetic wave resistivity logging instrument, an application model of geological guidance has been established and simulated its response characteristics. By studying the quasi-Newton inversion algorithm and process, the Jacobian matrix was obtained with less calculation cost in the inversion process, which greatly speeds up the inversion. At the same time, the correctness and accuracy of this algorithm were verified by using the theoretical inversion model including both single interface and a double interface strata model. The field test of Well Cao-XX in Shengli Oilfield showed that the real-time inversion results were consistent with the imaging display of azimuthal electromagnetic wave resistivity and also with the drilling/completion/logging results in later stages. This inversion method can meet the requirements of real time geo-steering by efficient and accurate calculation of azimuthal electromagnetic wave resistivity.
-
-
表 1 单界面反演结果
Table 1 Inversion results of single interface model
反演
方法上地层反演
电阻率/(Ω·m)下地层反演
电阻率/(Ω·m)界面距离/
m迭代
次数牛顿法 1.05 10.12 0.43 12 拟牛顿法 1.03 10.08 0.41 6 -
[1] 高永德,陈鸣,蔡建荣,等. 基于地层边界探测的主动型地质导向技术在南海西部复杂油层中的应用[J]. 中国海上油气, 2014, 26(5): 63–69. GAO Yongde, CHEN Ming, CAI Jianrong, et al. An application of the active geosteering technique based on stratigraphic-boundary detection in complex reservoirs in the western South China Sea[J]. China Offshore Oil and Gas, 2014, 26(5): 63–69.
[2] WANG Hanming, BARBER T, MORRISS C, et al. Triaxial induction logging: theory, modeling, inversion and interpretation[R]. SPE 103897, 2006.
[3] FANG Sheng, MERCHANT G A, HART E, et al. Determination of structural dip and azimuthal from LWD azimuthal propagation resistivity measurements in anisotropic formations[R]. SPE 116123, 2008.
[4] RABINOVICH M, LE Fei, LOFTS J, et al. Deep? How deep and what? The vagaries and myths of “look around” deep-resistivity measurements while drilling[R]. SPWLA-2011-NNN, 2011.
[5] BITTAR M S, KLEIN J D, RANDY B, et al. A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[J]. SPE Reservoir evaluation &engineering, 2009, 12(2): 270–279.
[6] 朱庚雪, 刘得军, 张颖颖, 等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术, 2015, 43(2): 63–70. ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
[7] PARDO D, TORRES-VERDIN C. Fast 1D inversion of logging-while-drilling resistivity measurements for improved estimation of formation resistivity in high-angle and horizontal wells[J]. Geophysics, 2015, 80(2): E111–E124. doi: 10.1190/geo2014-0211.1
[8] 冯进,倪小威,杨清,等. 基于混合模拟退火算法的阵列侧向测井实时反演研究[J]. 石油钻探技术, 2019, 47(5): 121–126. FENG Jin, NI Xiaowei, YANG Qing, et al. Research on array lateral logging real-time inversions based on hybrid simulated annealing algorithms[J]. Petroleum Drilling Techniques, 2019, 47(5): 121–126.
[9] LI Qiming, OMERAGIC D, CHOU L, et al. New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[R]. SPWLA-2005-UU, 2005.
[10] OMERAGIC D, LI Qiming, CHOU L, et al. Deep directional electromagnetic measurement for optimal placement[R]. SPE 97045, 2005.
[11] CHEMALI R E, CAIRNS P G, WANG T, et al. Method for signal enhancement in azimuthal propagation resistivity while drilling: US7375530B2[P]. 2008-05-20.
[12] WANG T, CHEMALI R E. Method of generating a deep resistivity image in LWD measurement: US7483793B2[P]. 2009-01-27.
[13] KENNEDY W D, CORLEY B, PAINCHAUD S, et al. Geosteering using deep resistivity image from azimuthal and multiple propagation resistivity[R]. SPWLA-2009-64467, 2009.
[14] SEIFERT D, CHEMALI R, BITTAR M, et al. The link between resistivity contrast and successful geosteering[R]. SPWLA-2011-VVV, 2011.
[15] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035–2043. YANG Zhen, YANG Jinzhou, HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035–2043.
[16] 杨震,杨锦舟,韩来聚. 随钻方位电磁波仪器补偿测量方法研究[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 62–69. YANG Zhen, YANG Jinzhou, HAN Laiju. Research on azimuthal electromagnetic tool while drilling measuring method of compensation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 62–69.
[17] ZHANG Zhiyi, GONGUET C, RAJAN V, et al. Directional LWD resistivity tools and their business impacts[R]. SPWLA -2008-FFFF. 2008.
[18] 肖加奇,张庚骥. 水平井和大斜度井中的感应测井响应计算[J]. 地球物理学报, 1995, 38(3): 396–404. XIAO Jiaqi, ZHANG Gengji. Computation of induction logging response in horizontal and highly-deviated wells[J]. Chinese Journal of Geophysics, 1995, 38(3): 396–404.
[19] 张辉,李桐林,董瑞霞,等. 利用高斯求积和连分式展开计算电磁张量格林函数积分[J]. 地球物理学进展, 2005, 20(3): 667–670. ZHANG Hui, LI Tonglin, DONG Ruixia, et al. Computation of Green’s tensor integrals for electromagnetic problem using Gaussian quadrature and continued fraction[J]. Progress in Geophysics, 2005, 20(3): 667–670.
[20] 孙向阳,聂在平,赵延文,等. 用矢量有限元方法模拟随钻测井仪在倾斜各向异性地层中的电磁响应[J]. 地球物理学报, 2008, 51(5): 1600–1607. SUN Xiangyang, NIE Zaiping, ZHAO Yanwen, et al. The electromagnetic modeling of logging-while-drilling tool in tilted anisotropic formations using vector finite element method[J]. Chinese Journal of Geophysics, 2008, 51(5): 1600–1607.
[21] 王昌学,周灿灿,储昭坦,等. 电性各向异性地层频率域电磁响应模拟[J]. 地球物理学报, 2006, 49(6): 1873–1883. WANG Changxue, ZHOU Cancan, CHU Zhaotan, et al. Modeling of electromagnetic responses in frequency domain to electrical anisotropic formations[J]. Chinese Journal of Geophysics, 2006, 49(6): 1873–1883.
[22] 肖加奇,张国艳,洪德成,等. 层状各向异性地层中三维感应测井响应快速计算及资料处理[J]. 地球物理学报, 2013, 56(2): 696–706. XIAO Jiaqi, ZHANG Guoyan, HONG Decheng, et al. Fast forward modeling and data processing of 3D induction logging tool in layered anisotropic formation[J]. Chinese Journal of Geophysics, 2013, 56(2): 696–706.
[23] SEIFERT D, CHEMALI R, BITTAR M. The link between resistivity contrast and successful geosteering[R]. SPWLA -2011-VV, 2011.
[24] 李勇华,杨锦舟,杨震,等. 随钻电阻率地层边界响应特征分析及应用[J]. 石油钻探技术, 2016, 44(6): 111–116. LI Yonghua, YANG Jinzhou, YANG Zhen, et al. The analysis and application of formation interface response characteristics of the resistivity LWD tool[J]. Petroleum Drilling Techniques, 2016, 44(6): 111–116.
[25] 冯进,张中庆,罗虎. 随钻电磁波电阻率和电缆电阻率测井联合反演及应用[J]. 测井技术, 2015, 39(1): 21–26. FENG Jin, ZHANG Zhongqing, LUO Hu. Joint inversion of electromagnetic logging while drilling and wire line resistivity logging and its application l[J]. Well Logging Technology, 2015, 39(1): 21–26.
[26] 杨震,文艺,肖红兵. 随钻方位电磁波仪器探测电阻率各向异性新方法[J]. 石油钻探技术, 2016, 44(3): 115–120. YANG Zhen, WEN Yi, XIAO Hongbing. A new method of detecting while drilling resistivity anisotropy with azimuthal electromagnetic wave tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115–120.
[27] 杨锦舟. 随钻方位电磁波仪器界面预测影响因素分析[J]. 测井技术, 2014, 38(1): 39–45,50. YANG Jinzhou. Analysis on the affecting factors of prediction interface with azimuthal LWD electromagnetic tool[J]. Well Logging Technology, 2014, 38(1): 39–45,50.
[28] MARTINEZ J M. Practical quasi-Newton method for solving nonlinear systems[J]. Journal of Computational and Applied Mathematics, 2000, 124(1/2): 97–121.
-
期刊类型引用(1)
1. 肖功勋. 复杂层状地层的随钻核磁共振测井响应模拟分析. 中国石油和化工标准与质量. 2021(05): 103-105 . 百度学术
其他类型引用(0)