Research on Renewable Biosynthetic-Based Drilling Fluid Systems
-
摘要:
油基钻井液普遍存在基础油难以降解、不可再生等缺点,为此,利用天然生物油脂,通过催化加氢、分子异构等合成了生物合成基础油,以该基础油和改性有机土为主,通过优选其他钻井液添加剂及加量,形成了可再生生物合成基钻井液体系。生物合成基础油是C12—C24的支链异构烷烃混合物,具有优良的安全环保性和黏温特性。室内性能评价试验结果表明,可再生生物合成基钻井液体系的高温高压滤失量低于12 mL,沉降稳定性好,破乳电压在768 V以上,96 h半致死浓度大于1 000 000 mg/L,能抗20%地层水和10%劣土的侵入,岩屑滚动回收率达到98.06%,经其污染的岩心其渗透率恢复率为83.5%~92.3%。研究结果表明,生物合成基础油具有低毒环保、可降解、可再生等优点,可再生生物合成基钻井液在乳液稳定、抗污染、润滑、抑制、储层保护、安全环保等方面均表现出良好的性能,完全能满足复杂地质条件对钻井液的需求。
Abstract:Oil-based drilling fluids generally have various disadvantages, for example, the base oil is difficult to degrade and non-renewable. Therefore, an investigation on the renewable biosynthesis oil-based drilling fluid system was carried out. The biosynthetic base oils were synthesized by the catalytic hydrogenation and molecular isomerization of natural bio-oils and fats. Based on the biosynthetic base oil and modified organic soil, the renewable biosynthesis-based drilling fluid system was formed through adding other drilling fluid additives and the optimized dosage, and its performance was evaluated. The biosynthetic base oil was a mixture of C12–C24 branched isoparaffins, which had excellent safety, environmental protection and viscosity-temperature properties. The high temperature and high pressure filtration loss of the renewable biosynthesis-based drilling fluid system was lower than 12 mL, the sedimentation stability was good, the demulsification voltage was up to 768 V, and the 96 h semi-lethal concentration was greater than 1 000 000 mg/L. The biosynthetic oil was able to resist the invasion of 20% formation water and 10% inferior soil, and the rolling recovery rate of cuttings reached 98.06%; the permeability recovery rate of the contaminated cores was up to 83.5%–92.3%. The research results showed that the oil with a biosynthetic base possessed the advantages of low toxicity, environmental protection, degradability and regenerability. The prepared drilling fluid exhibited good properties in emulsion stability, anti-pollution, lubrication, inhibition, reservoir protection, safety and environmental protection, which fully met the needs of drilling fluids under complex geological conditions.
-
-
表 1 油基钻井液常用基础油的性能参数
Table 1 Performance parameters of common base oils for oil-based drilling fluids
常用基础油 密度/(kg·m–3) 闪点/℃ 苯胺点/℃ 芳烃含量/(mg·kg–1) 硫含量/(mg·kg–1) 运动黏度/(mm2·s–1) 96 h LC50/(mg·L–1) 天然气制油 851 110 88 1.20 1.00 3.0 >1 000 000 白油 810 144 83 2.00 3.00 5.8 >1 000 000 BP8313 785 83 80 20 000.00 13.00 2.7 820 000 柴油 841 83 57 30 000.00~50 000.00 250.00 5.9 80 000 Mentor26 838 74 78 10 000.00~20 000.00 5.90 2.7 480 000 生物合成基础油 802 147 92 0.05 0.45 1.9 >1 000 000 注:依据标准《车用柴油(Ⅴ)》(GB/T 19147—2013)和《钻井液生物鉴定推荐作法》(API RP13H)测得。 表 2 不同基础油加入改性有机土后的黏切性能
Table 2 Adhesive performance of different base oils after adding modified organic soil
基础油 条件 成胶
率,%表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
Pa柴油 老化前 100 13.0 11.2 1.8 老化后 99 14.7 13.0 1.7 白油 老化前 79 14.0 12.0 2.0 老化后 77 13.8 11.9 1.9 天然气制油 老化前 85 12.5 10.9 1.6 老化后 80 13.7 12.2 1.5 生物合成基础油 老化前 83 12.2 10.6 1.6 老化后 79 13.5 12.0 1.5 注:依据标准《油基钻井液用有机土技术规范》(Q/SY 1817—2015)测得。 表 3 可再生生物合成基钻井液的基本性能及生物毒性
Table 3 Basic properties and biological toxicity of biosynthetic drilling fluid
密度/
(kg·L–1)条件 表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
Pa静切力/
PaAPI滤失量/
mL高温高压滤失量/
mL破乳电压/
V96 h LC50/
(mg·L–1)0.90 老化前 19 15 4 1.3/1.7 1.8 11.9 1 504 >1 000 000 老化后 30 23 7 1.6/2.0 1.3 9.7 1 874 1.20 老化前 29 21 8 2.0/2.4 1.5 9.2 1 665 >1 000 000 老化后 37 26 11 2.2/3.1 1.0 8.8 1 730 1.50 老化前 32 22 10 2.2/3.5 1.2 7.0 1 422 >1 000 000 老化后 47 34 13 2.9/4.8 0.8 6.4 1 601 1.85 老化前 43 31 12 2.9/5.2 0.8 6.2 1 134 >1 000 000 老化后 54 39 15 3.5/5.5 0.6 5.3 1 377 静置24 h 66 45 21 5.2/8.3 0.7 6.2 1 090 2.25 老化前 59 42 17 3.2/5.7 0.4 3.2 768 >1 000 000 老化后 70 39 18 4.3/6.8 0.3 2.4 955 静置24 h 78 50 28 7.0/10.5 0.6 4.0 976 注:老化条件为180 ℃下滚动16 h;高温高压条件是150 ℃、3.45 MPa;基本性能依据标准《石油天然气工业 钻井液现场测试 第2部分 油基钻井液》(GB/T 16783.2—2012)测得;生物毒性依据《钻井液生物鉴定推荐作法》(API RP13H)测得。 表 4 不同钻井液抑制性和润滑性的评价结果
Table 4 Evaluation results of the inhibition and lubricity of different drilling fluids
钻井液 一次回收率,% 二次回收率,% 90 min吸水量/g 24 h后样品状态 润滑系数 蒸馏水 17.32 7.86 完全解体 完全散落 0.34 聚硅氟钻井液 54.45 43.36 12.34 四周有剥落 0.17 聚合醇钻井液 79.54 70.79 8.54 表面有裂纹 0.10 KCl聚合物钻井液 81.63 70.89 6.64 体积明显膨胀 0.14 白油油基钻井液 98.78 97.56 0.78 无明显变化 0.04 可再生生物合成基钻井液 99.02 98.06 0.62 几乎无变化 0.03 注:可再生生物合成基钻井液密度为1.20 kg/L,油水比为90∶10。 表 5 可再生生物合成基钻井液抗水和劣土污染试验结果
Table 5 Results of pollution test of biosynthetic base drilling fluid against water and inferior soil
污染物 条件 表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
PaAPI滤失量/
mL高温高压滤失量/
mL破乳电压/
V5%水 老化前 36.0 25.0 11.0 1.5 1 176 老化后 41.0 30.0 11.0 1.3 8.8 1 242 10%水 老化前 42.0 29.0 13.0 1.4 975 老化后 48.0 33.0 15.0 0.9 7.6 1 091 20%水 老化前 54.0 37.0 17.0 0.8 691 老化后 61.0 41.0 20.0 0.6 5.7 810 3%劣土 老化前 36.5 25.5 11.0 1.3 1 130 老化后 40.0 28.0 12.0 1.0 6.3 1 245 7%劣土 老化前 42.0 28.0 11.5 2.0 944 老化后 53.0 36.0 17.0 1.9 7.5 1 175 10%劣土 老化前 64.0 42.0 22.0 1.8 744 老化后 70.5 46.5 24.0 2.1 9.9 793 注:生物合成基钻井液密度1.20 kg/L,油水比90∶10;老化条件是在150 ℃下滚动16 h;高温高压条件是150 ℃、3.45 MPa;劣土为辽河油田雷88区块的天然泥页岩钻屑;侵入水是矿化度为6 000 mg/L的模拟地层水(519 mg/L CaCl2+351 mg/L MgCl2+1 581 mg/L Na2SO4+3 549 mg/L NaCl)。 表 6 渗透率恢复率试验结果
Table 6 Results of permeability recovery test
岩心号 气测渗透率/mD 损害前的渗透率/mD 损害后的渗透率/mD 渗透率恢复率,% 1 0.86 0.189 0.158 83.5 2 8.31 2.119 1.771 83.6 3 28.16 5.017 4.299 85.7 4 53.07 10.389 9.454 91.0 5 239.06 42.089 38.848 92.3 注:可再生生物合成基钻井液密度1.20 kg/L,油水比为90∶10;损害温度为120 ℃。 -
[1] 王中华. 国内外油基钻井液研究与应用进展[J]. 断块油气田, 2011, 18(4): 533–537. WANG Zhonghua. Research and application progress of oil-based drilling fluid at home and abroad[J]. Fault-Block Oil & Gas Field, 2011, 18(4): 533–537.
[2] 王中华. 国内钻井液处理剂研发现状与发展趋势[J]. 石油钻探技术, 2016, 44(3): 1–8. WANG Zhonghua. Present status and trends in research and development of drilling fluid additives in China[J]. Petroleum Drilling Techniques, 2016, 44(3): 1–8.
[3] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术, 2014, 42(4): 7–13. LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.
[4] 孙明波,乔军,刘宝峰,等. 生物柴油钻井液研究与应用[J]. 钻井液与完井液, 2013, 30(4): 15–18. doi: 10.3969/j.issn.1001-5620.2013.04.005 SUN Mingbo, QIAO Jun, LIU Baofeng, et al. Research and application of biodiesel-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(4): 15–18. doi: 10.3969/j.issn.1001-5620.2013.04.005
[5] 杨洁,徐同台,武星星,等. 生物柴油钻井液的研究[J]. 钻井液与完井液, 2013, 30(6): 36–40. doi: 10.3969/j.issn.1001-5620.2013.06.011 YANG Jie, XU Tongtai, WU Xingxing, et al. The studics of bio-diesel drilling fluids[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 36–40. doi: 10.3969/j.issn.1001-5620.2013.06.011
[6] 胡友林,乌效鸣,岳前升,等. 深水钻井气制油合成基钻井液室内研究[J]. 石油钻探技术, 2012, 40(6): 38–42. doi: 10.3969/j.issn.1001-0890.2012.06.008 HU Youlin, WU Xiaoming, YUE Qiansheng, et al. Laboratory research on deepwater GTL synthetic-based drilling fluid[J]. Petroleum Drilling Techniques, 2012, 40(6): 38–42. doi: 10.3969/j.issn.1001-0890.2012.06.008
[7] 王茂功,徐显广,孙金声,等. 气制油合成基钻井液关键处理剂研制与应用[J]. 钻井液与完井液, 2016, 33(3): 30–34, 40. doi: 10.3969/j.issn.1001-5620.2016.03.006 WANG Maogong, XU Xianguang, SUN Jinsheng, et al. Study and application of additives for synthetic fluids with GTL as the base fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 30–34, 40. doi: 10.3969/j.issn.1001-5620.2016.03.006
[8] 万绪新,张海青,沈丽,等. 合成基钻井液技术研究与应用[J]. 钻井液与完井液, 2014, 31(4): 26–29. doi: 10.3969/j.issn.1001-5620.2014.04.008 WAN Xuxin, ZHANG Haiqing, SHEN Li, et al. Study and application of synthetic base drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2014, 31(4): 26–29. doi: 10.3969/j.issn.1001-5620.2014.04.008
[9] 单海霞,王中华,徐勤,等. 生物质基液PO-12的合成与性能评价[J]. 石油钻探技术, 2017, 45(4): 41–45. SHAN Haixia, WANG Zhonghua, XU Qin, et al. Synthesis and performance assessments of biomass base liquid PO-12[J]. Petroleum Drilling Techniques, 2017, 45(4): 41–45.
[10] 单海霞,王中华,何焕杰,等. 生物质合成基液LAE-12的合成及性能研究[J]. 钻井液与完井液, 2016, 33(2): 1–4. SHAN Haixia, WANG Zhonghua, HE Huanjie, et al. Synthesis and performance evaluation of bio-mass synthetic base fluid LAE-12[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 1–4.
[11] 翟西平,殷长龙,刘晨光. 油脂加氢制备第二代生物柴油的研究进展[J]. 石油化工, 2011, 40(12): 1364–1369. ZHAI Xiping, YIN Changlong, LIU Chenguang. Advances in second generation biodiesel prepared by hydroprocessing of Oils and Fats[J]. Petrochemical Technology, 2011, 40(12): 1364–1369.
[12] 解宇宁. 低毒环保型油基钻井液体系室内研究[J]. 石油钻探技术, 2017, 45(1): 45–50. XIE Yuning. Experimental study on low-toxicity and environmental-friendly oil-based drilling fluids[J]. Petroleum Drilling Techniyues, 2017, 45(1): 45–50.
[13] 王旭东,郭保雨,陈二丁,等. 油基钻井液用高性能乳化剂的研制与评价[J]. 钻井液与完井液, 2014, 31(6): 1–4. doi: 10.3969/j.issn.1001-5620.2014.06.001 WANG Xudong, GUO Baoyu, CHEN Erding, et al. Development and evaluation of a high performance oil base mud emulsifie[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 1–4. doi: 10.3969/j.issn.1001-5620.2014.06.001
[14] 张建阔,王旭东,郭保雨,等. 油基钻井液用固体乳化剂的研制与评价[J]. 石油钻探技术, 2016, 44(4): 58–64. ZHANG Jiankuo, WANG Xudong, GUO Baoyu, et al. Development and evaluation of a solid emulsifier for oil based drilling fluid[J]. Petroleum Drilling Techniques, 2016, 44(4): 58–64.
[15] 陶怀志,吴正良,贺海. 国产油基钻井液CQ-WOM首次在页岩气威远H3-1井试验[J]. 钻采工艺, 2014, 37(5): 87–90. doi: 10.3969/J.ISSN.1006-768X.2014.05.28 TAO Huaizhi, WU Zhengliang, HE Hai. Tests of oil-base drilling fluid CQ-WOM made in China in Weiyuan H3-1 shale gas well[J]. Drilling & Production Technology, 2014, 37(5): 87–90. doi: 10.3969/J.ISSN.1006-768X.2014.05.28
[16] GB/T 16783.2—2012 石油天然气工业: 钻井液现场测试: 第2部分: 油基钻井液[S]. GB/T 16783.2—2012 Petroleum and natural gas industries field testing of drilling fluids part 2: oil based fluide[S].
[17] SY/T 6540—2002 钻井液完井液损害油层室内评价方法[S]. SY/T 6540—2002 Lab testing method of drilling and completion fluids damaging oil formation[S].
-
期刊类型引用(14)
1. 于富安,刘维平,孙健越. 双聚防塌冲洗液在覆盖层钻探中的应用. 钻探工程. 2025(02): 59-64 . 百度学术
2. 张统得,樊腊生,刘伟,蒋炳,邓伟,陆俊泽. 页岩气调查井复杂地层有机硅聚合物钻井液体系的研制与应用. 科学技术与工程. 2024(02): 520-527 . 百度学术
3. 宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 . 百度学术
4. 廖龙,刘坤翔,鲁毅,杨纯,陈香琴. 强力网堵漏技术及施工工艺分析. 石化技术. 2024(05): 144-146 . 百度学术
5. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
6. 宋瀚轩,叶艳,周童,郑蔚茹,张謦文. 纳米颗粒材料在水基钻井液中封堵性能研究与评价. 应用化工. 2023(09): 2501-2505+2510 . 百度学术
7. 王苏南,狄明利,马积贺,苗海龙,郭磊,邱正松,单锴. 南海东部某油田古近系复杂煤层防塌钻井液技术研究. 能源化工. 2023(04): 53-57 . 百度学术
8. 陈香琴,刘坤翔,肖梦林,徐聪. 加固保护井壁创新技术在某油田的应用. 化工管理. 2023(32): 76-79+83 . 百度学术
9. 张冬明. 松辽盆地中上部水敏性地层高密度油基钻井液研究. 西部探矿工程. 2022(07): 83-87 . 百度学术
10. 胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 . 本站查看
11. 肖夏,陈彬. 南海东部M区块古近系地层井壁稳定钻井液技术. 海洋石油. 2022(03): 81-84 . 百度学术
12. 薛亮,肖夏,艾飞. 硅酸盐钻井液在XJ区块古近系地层的应用. 中国石油和化工标准与质量. 2021(07): 142-143 . 百度学术
13. 金勇,张强,覃建宇,张永涛,狄明利,单锴. 陆丰古近系复杂地层防塌钻井液技术研究. 当代化工. 2021(06): 1464-1467+1478 . 百度学术
14. 赵素丽. 强抑制高润滑丙三醇基钻井液体系研究与性能评价. 石油钻探技术. 2020(04): 56-62 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 1119
- HTML全文浏览量: 567
- PDF下载量: 66
- 被引次数: 16