可再生生物合成基钻井液体系研究

解宇宁

解宇宁. 可再生生物合成基钻井液体系研究[J]. 石油钻探技术, 2019, 47(6): 34-39. DOI: 10.11911/syztjs.2019097
引用本文: 解宇宁. 可再生生物合成基钻井液体系研究[J]. 石油钻探技术, 2019, 47(6): 34-39. DOI: 10.11911/syztjs.2019097
XIE Yuning. Research on Renewable Biosynthetic-Based Drilling Fluid Systems[J]. Petroleum Drilling Techniques, 2019, 47(6): 34-39. DOI: 10.11911/syztjs.2019097
Citation: XIE Yuning. Research on Renewable Biosynthetic-Based Drilling Fluid Systems[J]. Petroleum Drilling Techniques, 2019, 47(6): 34-39. DOI: 10.11911/syztjs.2019097

可再生生物合成基钻井液体系研究

详细信息
    作者简介:

    解宇宁(1987—),男,黑龙江安达人,2009年毕业于大庆石油学院石油工程专业,2012年获东北石油大学油气井工程专业硕士学位,工程师,主要从事钻井液完井液及其材料开发、井壁稳定、油气层保护等方面的研究。E-mail:324802691@qq.com

  • 中图分类号: TE254+.3

Research on Renewable Biosynthetic-Based Drilling Fluid Systems

  • 摘要:

    油基钻井液普遍存在基础油难以降解、不可再生等缺点,为此,利用天然生物油脂,通过催化加氢、分子异构等合成了生物合成基础油,以该基础油和改性有机土为主,通过优选其他钻井液添加剂及加量,形成了可再生生物合成基钻井液体系。生物合成基础油是C12—C24的支链异构烷烃混合物,具有优良的安全环保性和黏温特性。室内性能评价试验结果表明,可再生生物合成基钻井液体系的高温高压滤失量低于12 mL,沉降稳定性好,破乳电压在768 V以上,96 h半致死浓度大于1 000 000 mg/L,能抗20%地层水和10%劣土的侵入,岩屑滚动回收率达到98.06%,经其污染的岩心其渗透率恢复率为83.5%~92.3%。研究结果表明,生物合成基础油具有低毒环保、可降解、可再生等优点,可再生生物合成基钻井液在乳液稳定、抗污染、润滑、抑制、储层保护、安全环保等方面均表现出良好的性能,完全能满足复杂地质条件对钻井液的需求。

    Abstract:

    Oil-based drilling fluids generally have various disadvantages, for example, the base oil is difficult to degrade and non-renewable. Therefore, an investigation on the renewable biosynthesis oil-based drilling fluid system was carried out. The biosynthetic base oils were synthesized by the catalytic hydrogenation and molecular isomerization of natural bio-oils and fats. Based on the biosynthetic base oil and modified organic soil, the renewable biosynthesis-based drilling fluid system was formed through adding other drilling fluid additives and the optimized dosage, and its performance was evaluated. The biosynthetic base oil was a mixture of C12–C24 branched isoparaffins, which had excellent safety, environmental protection and viscosity-temperature properties. The high temperature and high pressure filtration loss of the renewable biosynthesis-based drilling fluid system was lower than 12 mL, the sedimentation stability was good, the demulsification voltage was up to 768 V, and the 96 h semi-lethal concentration was greater than 1 000 000 mg/L. The biosynthetic oil was able to resist the invasion of 20% formation water and 10% inferior soil, and the rolling recovery rate of cuttings reached 98.06%; the permeability recovery rate of the contaminated cores was up to 83.5%–92.3%. The research results showed that the oil with a biosynthetic base possessed the advantages of low toxicity, environmental protection, degradability and regenerability. The prepared drilling fluid exhibited good properties in emulsion stability, anti-pollution, lubrication, inhibition, reservoir protection, safety and environmental protection, which fully met the needs of drilling fluids under complex geological conditions.

  • 表  1   油基钻井液常用基础油的性能参数

    Table  1   Performance parameters of common base oils for oil-based drilling fluids

    常用基础油密度/(kg·m–3闪点/℃苯胺点/℃芳烃含量/(mg·kg–1硫含量/(mg·kg–1运动黏度/(mm2·s–196 h LC50/(mg·L–1
    天然气制油851110881.201.003.0>1 000 000
    白油810144832.003.005.8>1 000 000
    BP8313785 838020 000.0013.00 2.7 820 000
    柴油841 835730 000.00~50 000.00250.00 5.9 80 000
    Mentor26838 747810 000.00~20 000.005.902.7 480 000
    生物合成基础油802147920.050.451.9>1 000 000
     注:依据标准《车用柴油(Ⅴ)》(GB/T 19147—2013)和《钻井液生物鉴定推荐作法》(API RP13H)测得。
    下载: 导出CSV

    表  2   不同基础油加入改性有机土后的黏切性能

    Table  2   Adhesive performance of different base oils after adding modified organic soil

    基础油条件成胶
    率,%
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    柴油老化前100 13.011.21.8
    老化后9914.713.01.7
    白油老化前7914.012.02.0
    老化后7713.811.91.9
    天然气制油老化前8512.510.91.6
    老化后8013.712.21.5
    生物合成基础油老化前8312.210.61.6
    老化后7913.512.01.5
     注:依据标准《油基钻井液用有机土技术规范》(Q/SY 1817—2015)测得。
    下载: 导出CSV

    表  3   可再生生物合成基钻井液的基本性能及生物毒性

    Table  3   Basic properties and biological toxicity of biosynthetic drilling fluid

    密度/
    (kg·L–1
    条件表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/
    Pa
    API滤失量/
    mL
    高温高压滤失量/
    mL
    破乳电压/
    V
    96 h LC50/
    (mg·L–1
    0.90老化前1915 41.3/1.71.811.9 1 504>1 000 000
    老化后3023 71.6/2.01.39.71 874
    1.20老化前2921 82.0/2.41.59.21 665>1 000 000
    老化后3726112.2/3.11.08.81 730
    1.50老化前3222102.2/3.51.27.01 422>1 000 000
    老化后4734132.9/4.80.86.41 601
    1.85老化前4331122.9/5.20.86.21 134>1 000 000
    老化后5439153.5/5.50.65.31 377
    静置24 h6645215.2/8.30.76.21 090
    2.25老化前5942173.2/5.70.43.2 768>1 000 000
    老化后7039184.3/6.80.32.4 955
    静置24 h7850287.0/10.50.64.0 976
     注:老化条件为180 ℃下滚动16 h;高温高压条件是150 ℃、3.45 MPa;基本性能依据标准《石油天然气工业 钻井液现场测试 第2部分 油基钻井液》(GB/T 16783.2—2012)测得;生物毒性依据《钻井液生物鉴定推荐作法》(API RP13H)测得。
    下载: 导出CSV

    表  4   不同钻井液抑制性和润滑性的评价结果

    Table  4   Evaluation results of the inhibition and lubricity of different drilling fluids

    钻井液一次回收率,%二次回收率,%90 min吸水量/g24 h后样品状态润滑系数
    蒸馏水17.32 7.86完全解体完全散落0.34
    聚硅氟钻井液54.4543.3612.34 四周有剥落0.17
    聚合醇钻井液79.5470.798.54表面有裂纹0.10
    KCl聚合物钻井液81.6370.896.64体积明显膨胀0.14
    白油油基钻井液98.7897.560.78无明显变化0.04
    可再生生物合成基钻井液99.0298.060.62几乎无变化0.03
     注:可再生生物合成基钻井液密度为1.20 kg/L,油水比为90∶10。
    下载: 导出CSV

    表  5   可再生生物合成基钻井液抗水和劣土污染试验结果

    Table  5   Results of pollution test of biosynthetic base drilling fluid against water and inferior soil

    污染物条件表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    API滤失量/
    mL
    高温高压滤失量/
    mL
    破乳电压/
    V
    5%水老化前36.025.011.01.51 176
    老化后41.030.011.01.38.81 242
    10%水老化前42.029.013.01.4 975
    老化后48.033.015.00.97.61 091
    20%水老化前54.037.017.00.8 691
    老化后61.041.020.00.65.7 810
    3%劣土老化前36.525.511.01.31 130
    老化后40.028.012.01.06.31 245
    7%劣土老化前42.028.011.52.0 944
    老化后53.036.017.01.97.51 175
    10%劣土老化前64.042.022.01.8 744
    老化后70.546.524.02.19.9 793
     注:生物合成基钻井液密度1.20 kg/L,油水比90∶10;老化条件是在150 ℃下滚动16 h;高温高压条件是150 ℃、3.45 MPa;劣土为辽河油田雷88区块的天然泥页岩钻屑;侵入水是矿化度为6 000 mg/L的模拟地层水(519 mg/L CaCl2+351 mg/L MgCl2+1 581 mg/L Na2SO4+3 549 mg/L NaCl)。
    下载: 导出CSV

    表  6   渗透率恢复率试验结果

    Table  6   Results of permeability recovery test

    岩心号气测渗透率/mD损害前的渗透率/mD损害后的渗透率/mD渗透率恢复率,%
    1 0.860.1890.15883.5
    2 8.312.1191.77183.6
    328.165.0174.29985.7
    453.0710.389 9.45491.0
    5239.06 42.089 38.848 92.3
     注:可再生生物合成基钻井液密度1.20 kg/L,油水比为90∶10;损害温度为120 ℃。
    下载: 导出CSV
  • [1] 王中华. 国内外油基钻井液研究与应用进展[J]. 断块油气田, 2011, 18(4): 533–537.

    WANG Zhonghua. Research and application progress of oil-based drilling fluid at home and abroad[J]. Fault-Block Oil & Gas Field, 2011, 18(4): 533–537.

    [2] 王中华. 国内钻井液处理剂研发现状与发展趋势[J]. 石油钻探技术, 2016, 44(3): 1–8.

    WANG Zhonghua. Present status and trends in research and development of drilling fluid additives in China[J]. Petroleum Drilling Techniques, 2016, 44(3): 1–8.

    [3] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术, 2014, 42(4): 7–13.

    LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.

    [4] 孙明波,乔军,刘宝峰,等. 生物柴油钻井液研究与应用[J]. 钻井液与完井液, 2013, 30(4): 15–18. doi: 10.3969/j.issn.1001-5620.2013.04.005

    SUN Mingbo, QIAO Jun, LIU Baofeng, et al. Research and application of biodiesel-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(4): 15–18. doi: 10.3969/j.issn.1001-5620.2013.04.005

    [5] 杨洁,徐同台,武星星,等. 生物柴油钻井液的研究[J]. 钻井液与完井液, 2013, 30(6): 36–40. doi: 10.3969/j.issn.1001-5620.2013.06.011

    YANG Jie, XU Tongtai, WU Xingxing, et al. The studics of bio-diesel drilling fluids[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 36–40. doi: 10.3969/j.issn.1001-5620.2013.06.011

    [6] 胡友林,乌效鸣,岳前升,等. 深水钻井气制油合成基钻井液室内研究[J]. 石油钻探技术, 2012, 40(6): 38–42. doi: 10.3969/j.issn.1001-0890.2012.06.008

    HU Youlin, WU Xiaoming, YUE Qiansheng, et al. Laboratory research on deepwater GTL synthetic-based drilling fluid[J]. Petroleum Drilling Techniques, 2012, 40(6): 38–42. doi: 10.3969/j.issn.1001-0890.2012.06.008

    [7] 王茂功,徐显广,孙金声,等. 气制油合成基钻井液关键处理剂研制与应用[J]. 钻井液与完井液, 2016, 33(3): 30–34, 40. doi: 10.3969/j.issn.1001-5620.2016.03.006

    WANG Maogong, XU Xianguang, SUN Jinsheng, et al. Study and application of additives for synthetic fluids with GTL as the base fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 30–34, 40. doi: 10.3969/j.issn.1001-5620.2016.03.006

    [8] 万绪新,张海青,沈丽,等. 合成基钻井液技术研究与应用[J]. 钻井液与完井液, 2014, 31(4): 26–29. doi: 10.3969/j.issn.1001-5620.2014.04.008

    WAN Xuxin, ZHANG Haiqing, SHEN Li, et al. Study and application of synthetic base drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2014, 31(4): 26–29. doi: 10.3969/j.issn.1001-5620.2014.04.008

    [9] 单海霞,王中华,徐勤,等. 生物质基液PO-12的合成与性能评价[J]. 石油钻探技术, 2017, 45(4): 41–45.

    SHAN Haixia, WANG Zhonghua, XU Qin, et al. Synthesis and performance assessments of biomass base liquid PO-12[J]. Petroleum Drilling Techniques, 2017, 45(4): 41–45.

    [10] 单海霞,王中华,何焕杰,等. 生物质合成基液LAE-12的合成及性能研究[J]. 钻井液与完井液, 2016, 33(2): 1–4.

    SHAN Haixia, WANG Zhonghua, HE Huanjie, et al. Synthesis and performance evaluation of bio-mass synthetic base fluid LAE-12[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 1–4.

    [11] 翟西平,殷长龙,刘晨光. 油脂加氢制备第二代生物柴油的研究进展[J]. 石油化工, 2011, 40(12): 1364–1369.

    ZHAI Xiping, YIN Changlong, LIU Chenguang. Advances in second generation biodiesel prepared by hydroprocessing of Oils and Fats[J]. Petrochemical Technology, 2011, 40(12): 1364–1369.

    [12] 解宇宁. 低毒环保型油基钻井液体系室内研究[J]. 石油钻探技术, 2017, 45(1): 45–50.

    XIE Yuning. Experimental study on low-toxicity and environmental-friendly oil-based drilling fluids[J]. Petroleum Drilling Techniyues, 2017, 45(1): 45–50.

    [13] 王旭东,郭保雨,陈二丁,等. 油基钻井液用高性能乳化剂的研制与评价[J]. 钻井液与完井液, 2014, 31(6): 1–4. doi: 10.3969/j.issn.1001-5620.2014.06.001

    WANG Xudong, GUO Baoyu, CHEN Erding, et al. Development and evaluation of a high performance oil base mud emulsifie[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 1–4. doi: 10.3969/j.issn.1001-5620.2014.06.001

    [14] 张建阔,王旭东,郭保雨,等. 油基钻井液用固体乳化剂的研制与评价[J]. 石油钻探技术, 2016, 44(4): 58–64.

    ZHANG Jiankuo, WANG Xudong, GUO Baoyu, et al. Development and evaluation of a solid emulsifier for oil based drilling fluid[J]. Petroleum Drilling Techniques, 2016, 44(4): 58–64.

    [15] 陶怀志,吴正良,贺海. 国产油基钻井液CQ-WOM首次在页岩气威远H3-1井试验[J]. 钻采工艺, 2014, 37(5): 87–90. doi: 10.3969/J.ISSN.1006-768X.2014.05.28

    TAO Huaizhi, WU Zhengliang, HE Hai. Tests of oil-base drilling fluid CQ-WOM made in China in Weiyuan H3-1 shale gas well[J]. Drilling & Production Technology, 2014, 37(5): 87–90. doi: 10.3969/J.ISSN.1006-768X.2014.05.28

    [16] GB/T 16783.2—2012 石油天然气工业: 钻井液现场测试: 第2部分: 油基钻井液[S].

    GB/T 16783.2—2012 Petroleum and natural gas industries field testing of drilling fluids part 2: oil based fluide[S].

    [17] SY/T 6540—2002 钻井液完井液损害油层室内评价方法[S].

    SY/T 6540—2002 Lab testing method of drilling and completion fluids damaging oil formation[S].

  • 期刊类型引用(14)

    1. 于富安,刘维平,孙健越. 双聚防塌冲洗液在覆盖层钻探中的应用. 钻探工程. 2025(02): 59-64 . 百度学术
    2. 张统得,樊腊生,刘伟,蒋炳,邓伟,陆俊泽. 页岩气调查井复杂地层有机硅聚合物钻井液体系的研制与应用. 科学技术与工程. 2024(02): 520-527 . 百度学术
    3. 宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 . 百度学术
    4. 廖龙,刘坤翔,鲁毅,杨纯,陈香琴. 强力网堵漏技术及施工工艺分析. 石化技术. 2024(05): 144-146 . 百度学术
    5. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    6. 宋瀚轩,叶艳,周童,郑蔚茹,张謦文. 纳米颗粒材料在水基钻井液中封堵性能研究与评价. 应用化工. 2023(09): 2501-2505+2510 . 百度学术
    7. 王苏南,狄明利,马积贺,苗海龙,郭磊,邱正松,单锴. 南海东部某油田古近系复杂煤层防塌钻井液技术研究. 能源化工. 2023(04): 53-57 . 百度学术
    8. 陈香琴,刘坤翔,肖梦林,徐聪. 加固保护井壁创新技术在某油田的应用. 化工管理. 2023(32): 76-79+83 . 百度学术
    9. 张冬明. 松辽盆地中上部水敏性地层高密度油基钻井液研究. 西部探矿工程. 2022(07): 83-87 . 百度学术
    10. 胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 . 本站查看
    11. 肖夏,陈彬. 南海东部M区块古近系地层井壁稳定钻井液技术. 海洋石油. 2022(03): 81-84 . 百度学术
    12. 薛亮,肖夏,艾飞. 硅酸盐钻井液在XJ区块古近系地层的应用. 中国石油和化工标准与质量. 2021(07): 142-143 . 百度学术
    13. 金勇,张强,覃建宇,张永涛,狄明利,单锴. 陆丰古近系复杂地层防塌钻井液技术研究. 当代化工. 2021(06): 1464-1467+1478 . 百度学术
    14. 赵素丽. 强抑制高润滑丙三醇基钻井液体系研究与性能评价. 石油钻探技术. 2020(04): 56-62 . 本站查看

    其他类型引用(2)

表(6)
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  567
  • PDF下载量:  66
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-08-29
  • 网络出版日期:  2019-09-10
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回