Key Problems and Technical Countermeasures in SIPC Operated Oilfield Development in Kazakhstan
-
摘要:
哈萨克斯坦SIPC油田开发年限较长,储层地质特征存在较大差异,开发过程中存在注水效率低、储层无法自然投产且改造难度大、储层易受到伤害、出砂严重、钻井速度低且成本高、环空带压等问题。为此,在分析问题原因的基础上,基于油田特点和技术现状,制定了应用高效注水技术、携砂采油技术、高效钻井技术等成熟技术,研制智能储层保护剂及研究复杂砂岩可控穿层压裂技术的技术对策。现场应用表明,该油田采用制定的技术对策,提高了注水效率和储层压裂改造效果,解决了地层出砂问题,降低了储层伤害程度和钻井成本,实现了低油价条件下降本增效的目的,支撑了哈萨克斯坦SIPC油田项目的顺利实施。
Abstract:The SIPC operated oilfield in Kazakhstan have experienced a long development period, and the geological characteristics of reservoirs are quite different. As a result, several problems occurred during the development process such as low water injection efficiency, difficulties in reservoir natural flow and stimulation, reservoir damage, severe sanding, high drilling cost and abnormal annulus pressure presence. Based on the analysis of the existing problems and considering the widely varying characteristics of this oilfield and current status of technology, countermeasures were proposed in which mature technologies such as high-efficiency water injection, sand-bearing oil recovery and high-efficiency drilling were adopted, intelligent reservoir protection agents were developed, and controllable cross-layer fracturing technology for complex sandstone was studied. The field application suggests that the proposed technical countermeasure can effectively improve water injection efficiency and fracturing stimulation effect, and solve the problem of sand production. The implementation of the countermeasures reduced reservoir contamination and drilling cost, and enhanced the development of the fields, and achieved target of cost-reduction and efficiency improvement during times of low oil prices. Further, this study may provide technical support for the smooth implementation of SIPC operated oilfield in Kazakhstan.
-
-
表 1 各油田油藏物性、开采方式与生产情况
Table 1 Reservoir physical properties, production methods and production states of each oilfield
油田 埋深/m 孔隙度,% 渗透率/mD 储层压力/
MPa储层温度/℃ 采油方式 平均单井产油量/
(t·d–1)综合含水
率,%SPC油田 300~800 12.3~41.7 0.3~1 986.8 4.0~9.5 23.0~40.1 杆式泵、螺杆泵 3.5 90.5 NB油田 350~500 30.0~32.0 1 900.0~2 000.0 4.0~5.3 29.0~33.0 电动潜油泵 3.9 93.8 KKM油田 2 600~3 160 10.0~15.8 1.0~16.0 22.1~34.2 102.0~115.0 电动潜油泵 9.5 90.1 KOA油田 2 900~3 500 8.3~20.0 1.0~11.0 27.0~38.1 110.0~135.5 部分井自喷,部
分井电动潜油泵21.5 9.5 -
[1] 何汉平,翁行芳,张垲莘,等. 哈萨克斯坦S油田浅层水平井完井工艺[J]. 石油钻采工艺, 2015, 37(4): 33–35. HE Hanping, WENG Xingfang, ZHANG Kaixin, et al. Completion technology for shallow horizontal wells of S Oilfield in Kazakhstan[J]. Oil Drilling & Production Technology, 2015, 37(4): 33–35.
[2] 汪益宁,孟浩,赖枫鹏,等. 周期注水改善高含水期油藏开发效果[J]. 油气田地面工程, 2011, 30(4): 41–44. doi: 10.3969/j.issn.1006-6896.2011.4.018 WANG Yining, MENG Hao, LAI Fengpeng, et al. Improving reservoir development effect in high water cut period withcycle injection[J]. Oil-Gasfield Surface Engineering, 2011, 30(4): 41–44. doi: 10.3969/j.issn.1006-6896.2011.4.018
[3] 王玫珠,杨正明,王学武,等. 大庆外围特低渗透油藏非线性渗流周期注水研究[J]. 断块油气田, 2012, 19(3): 327–331. WANG Meizhu, YANG Zhengming, WANG Xuewu, et al. Study on cycle water injection considering non-linear flow of ultra-low permeability reservoir in periphery part of Daqing Oilfield[J]. Fault-Block Oil & Gas Field, 2012, 19(3): 327–331.
[4] 王洪伟. 大规模压裂注水开发一体化技术在特低渗透油藏的应用[J]. 石油钻采工艺, 2018, 40(1): 102–106. WANG Hongwei. Application of integrated large-scale fracturing and water flooding development technology in extra low permea-bility oil reservoirs[J]. Oil Drilling & Production Technology, 2018, 40(1): 102–106.
[5] 姜兰兰. 注水开发工艺技术应用分析[J]. 科学技术与工程, 2011, 11(33): 8321–8324, 8330. doi: 10.3969/j.issn.1671-1815.2011.33.050 JIANG Lanlan. Application analysis of water injection development technology[J]. Science Technology and Engineering, 2011, 11(33): 8321–8324, 8330. doi: 10.3969/j.issn.1671-1815.2011.33.050
[6] 滕学清,康毅力,张震,等. 塔里木盆地深层中–高渗砂岩储层钻井完井损害评价[J]. 石油钻探技术, 2018, 46(1): 37–43. TENG Xueqing, KANG Yili, ZHANG Zhen, et al. Evaluation of drilling and completion damage in deep medium-to-high permea-bility sandstone reservoir in Tarim Basin[J]. Petroleum Drilling Techniques, 2018, 46(1): 37–43.
[7] 刘红兰. 分层注水井测调一体化新技术[J]. 石油钻探技术, 2018, 46(1): 83–89. LIU Honglan. A new integrated measuring and adjusting technology of separate layer water injection well[J]. Petroleum Drilling Techniques, 2018, 46(1): 83–89.
[8] 向雄, 杨洪烈, 刘喜亮, 等. 南海西部超浅层气田水平井EZFLOW无固相弱凝胶钻井液研究与应用[J]. 石油钻探技术, 2018, 46(2): 38–43. XIANG Xiong, YANG Honglie, LIU Xiliang, et al. Research and application of ezflow solid-free weak gel drilling fluid in horizontal wells in shallow gas fields in the western South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 38–43.
[9] 赵全民,李燕,刘浩亚,等. SXJD-Ⅰ型低伤害暂堵修井液技术[J]. 石油钻探技术, 2019, 47(2): 109–113. doi: 10.11911/syztjs.2019046 ZHAO Quanmin, LI Yan, LIU Haoya, et al. The technology of SXJD-I type low damage temporary plugging workover fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 109–113. doi: 10.11911/syztjs.2019046
[10] 韩规划. 有杆泵携砂采油井筒配套技术[J]. 石油机械, 2005, 33(5): 42–45. doi: 10.3969/j.issn.1001-4578.2005.05.014 HAN Guihua. Matching of downhole equipment for sand-carrying rod pumping[J]. China Petroleum Machinery, 2005, 33(5): 42–45. doi: 10.3969/j.issn.1001-4578.2005.05.014
[11] 宋玉旺. 螺杆泵携砂采油配套技术在鲁克沁油田的应用[J]. 石油地质与工程, 2011, 25(2): 114–116. doi: 10.3969/j.issn.1673-8217.2011.02.037 SONG Yuwang. Application of screw pump sand transport oil production support technology in Lukeqin Oilfield[J]. Petroleum Geology and Engineering, 2011, 25(2): 114–116. doi: 10.3969/j.issn.1673-8217.2011.02.037
[12] 许京国,陶瑞东,郑智冬,等. 牙轮–PDC混合钻头在迪北103井的应用试验[J]. 天然气工业, 2014, 34(10): 71–74. doi: 10.3787/j.issn.1000-0976.2014.10.010 XU Jingguo, TAO Ruidong, ZHENG Zhidong, et al. Pilot tests of a roller-PDC hybrid bit in Well Dibei 103, Tarim Basin[J]. Natural Gas Industry, 2014, 34(10): 71–74. doi: 10.3787/j.issn.1000-0976.2014.10.010
[13] 田家林,朱永豪,吴纯明,等. 新型扭力冲击器的运动特性研究[J]. 机械设计与制造, 2016(3): 75–78. doi: 10.3969/j.issn.1001-3997.2016.03.021 TIAN Jialin, ZHU Yonghao, WU Chunming, et al. Kinetic characteristic research of a new torque oscillator[J]. Machinery Design & Manufacture, 2016(3): 75–78. doi: 10.3969/j.issn.1001-3997.2016.03.021
[14] 何汉平. 油气井环空允许带压值的计算方法探讨[J]. 钻采工艺, 2018, 41(4): 16–18. doi: 10.3969/J.ISSN.1006-768X.2018.04.05 HE Hanping. Probe on calculation methods for allowable annulus pressure in oil and gas wells[J]. Drilling & Production Technology, 2018, 41(4): 16–18. doi: 10.3969/J.ISSN.1006-768X.2018.04.05
[15] 马勇. 固井环空气体窜流原因分析及防控技术[D]. 成都: 西南石油大学, 2009. MA Yong. Causeanalysis of annulus gas cross flow and its prevention technology[D]. Chengdu: Southwest Petroleum University, 2009.
[16] 何汉平. 油气井井筒系统可靠性评价方法与应用[J]. 中国安全生产科学技术, 2018, 14(2): 139–144. HE Hanping. Evaluation method of wellbore system reliability for oil and gas wells and its application[J]. Journal of Safety Science and Technology, 2018, 14(2): 139–144.
[17] 陈昌宏,张倩,朱彦飞,等. 外加剂对水泥石力学性能的影响[J]. 油田化学, 2017, 34(3): 428–432. CHEN Changhong, ZHANG Qian, ZHU Yanfei, et al. Effect of admixtures on mechanical properties of cement[J]. Oilfield Chemistry, 2017, 34(3): 428–432.
-
期刊类型引用(6)
1. 赵楠,廖伟,李立,赵一潞,陈慧卿. 高盐高渗砂岩油藏泡沫调剖体系研究及应用. 石油化工应用. 2023(09): 112-116 . 百度学术
2. 闫月娟,曹宇航,刘崇江,李森,王尊策. 井下氮气泡沫发生器结构设计及发泡性能数值模拟. 机械设计. 2021(01): 64-71 . 百度学术
3. 巩权峰,魏学刚,辛懂. 油田堵水调剖剂的研究进展. 石油化工应用. 2021(01): 10-13 . 百度学术
4. 郭东红,李睿博,崔晓东,杨晓鹏,贾敏. 压力对改性α-烯烃磺酸盐起泡剂泡沫性能的影响. 精细石油化工. 2021(05): 10-13 . 百度学术
5. 崔晓东,黄小琼,郭东红,杨晓鹏,贾敏. 中低温、高矿化度油藏调驱用泡沫剂体系的研究. 精细与专用化学品. 2020(09): 16-18 . 百度学术
6. 李正辉,赵莉,陈菊涛,安金彪. 氮气驱与氮气泡沫驱技术适用性分析. 内蒙古石油化工. 2019(11): 83-85 . 百度学术
其他类型引用(15)